L’abecedari de la química

01/11/2018

Nova entrada al blog DivulCat. : analogia entre l’alfabet i el llenguatge elements-molècules-compostos

https://www.enciclopedia.cat/divulcat/Labecedari-de-la-quimica

Anuncis

La taula periòdica històrica de la Universitat de Barcelona

01/10/2018

Publicat al blog Divulcat

https://www.enciclopedia.cat/divulcat/La-taula-periodica-historica-de-la-Universitat-de-Barcelona


Què fa moure els busos de Barcelona?

23/05/2018

Nova entrada al blog de DIVULCAT, on publico des de fa un mes.

https://www.enciclopedia.cat/divulcat/Que-fa-moure-els-busos-de-Barcelona


ES POT FER QUÍMICA A INFANTIL I PRIMÀRIA?

09/07/2017

Pàgina inicial de la web del Programa Exper(i)ència

Naturalment que no. Com no es pot fer física, ni biología, ni historia de l’art. La pregunta és típica de profesor de secundària o d’universitat, acostumat a treballar per disciplines científique

El cicle de l’aigua a una bossa de plàstic (fes clic a qualsevol foto per ampliar-la)

s. Però a nivells d’infantil i primària és una altra cosa. Els mestres preparen les activitats corresponents a les diferents facetes docents – plàstica, natura i medi, llengua, matemàtiques i càlcul, motricitat i altres- de forma integrada, i quan estan treballant un aspecte, en treballen també d’altres simultàniament. El que no hi ha és una separació dràstica entre disciplines, com després cursaran els alumnes a secundària.

L’objecte d’aquesta entrada no és plantejar acadèmicament de quina manera es poden formar les  competències i continguts  dels àmbits científics a aquestes edats. Aquí em proposo simplement explicar l’experiència de formar part del projecte Exper(i)ència, promogut per la Fundació Catalana per a la Ciència i la Innovació (FCRI). Aquest projecte pretén l’estímul a la generació de vocacions científiques en alumnes des d’infantil a batxillerat. La metodología consisteix a posar en contacte els alumnes -en el seu entorn escolar- amb científics sènior, emèrits o jubilats, d’universitats o d’empreses. Cada centre i cada sènior elaboren un programa d’activitats, que poden ser molt variades i dependrà dels interessos del centre, del nivel dels alumnes i dels coneixements, interessos i disponibilitat del sènior. Actualment el projecte és en el seu segon any, i hi ha 28 científics i 28 escoles o instituts vinculats. Entre les activitats que es desenvolupen hi ha – de més a menys edat- la col·laboració en el treball de recerca de batxillerat, la impartició de conferències especialitzades, visites a centres de recerca, desenvolupament de pràctiques per part dels alumnes, demostracions pràctiques, formació del professorat, i totes aquelles que s’acordin entre ambdues parts.

Pintant amb aigua

A mi se’m va vincular a una escola d’infantil i primària de Barcelona, l’escola Turó del Cargol, al barri de Gràcia, al costat del Park Güell. A aquesta escola hi ha diverses mestres motivades per les activitats científiques, i programa cada any un tema transversal de treball, que les diferents classes treballen al seu nivell.

Experiments de flotació

De comú acord, el paper del sènior a l’escola ha estat doble. Per una banda, la formació dels mestres en allò que necessitéssin relacionat amb la ciencia, tant de l’activitat quotidiana com de les activitats relacionades amb el tema transversal. I, per altra banda,  el suggeriment, planificació i realització d’activitats científiques amb els nens. El primer dels cursos, a més, es va fer una activitat addicional, que va consistir en que els nens van treballar el tema de “Com és i què fa un científic”. Van fer tota mena de dibuixos de científics més o menys bojos amb bata blanca, majoritàriament homes. I, després, classe per classe, el científic sènior –un servidor- es sotmetia a una batería de preguntes de l’estil “Què has inventat”, “Fas explosions?” “Has tingut mai cap accident”, “Per què vas decidir-te a ser científic?” i mil preguntes més de difícil resposta i que donen una clara idea de la visió que els nens grans tenen d’un científic. Els més petits no sabien què era un científic i a partir d’ara es pensaran que tots els científics són com jo….

Circuits d’aigua

Enguany el tema transversal d’escola ha estat “L’aigua”. Hem dedicat tres sessions d’ 1 hora a la formació básica, consistent en fer treballar als mestres una pregunta cada dia: “Què és l’aigua?” “On hi ha aigua?” i “Per a què serveix l’aigua?”. A partir de les respostes inicials dels mestres a aquestes preguntes tan simples s’estructurava la sessió, plena d’idees, preguntes i suggeriments. Hem dedicat tres sessions més al disseny i preparació d’activitats sobre l’aigua. Algunes activitats es desenvolupaven a cada aula, i altres eren per tota l’escola, pel Dia Mundial de l’Aigua que es va celebrar el 22 de març de 2017. A les fotos es poden veure algunes de les activitats fetes: pintar amb aigua de colors, experiments de flotació, circuits en que l’aigua baixa per gravetat, i l’observació del cicle de l’aigua en una bossa de plàstic posada al sol. Tots reunits al pati vaig fer l’experiment del sortidor de cocacola amb mentos, que no té massa relació amb el tema de l’aigua, però que funciona i és espectacular. Val a dir que es fa amb cocacola light i és en un 98% aigua.

Al laboratori de l’escola , i per a les classes de P3 i P4 , a més, vaig fer personalment alguns experiments addicionals: trasvasar aigua entre dues galledes amb un tub de goma, desplaçar una barqueta de paper d’alumini amb detergent, aguantar l’aigua d’un got invertit amb un paper.

Com es pot entendre de tota la descripció anterior, en la meva opinió cal fer l’aproximació a la ciència amb una estrategia ben simple, i per descomptat experimental: primer, manipulació dels objectes per part dels mateixos nens; segon, observació orientada del què passa en fer l’experiment; i, després, a la clase, descripció amb el seu llenguatge del que han manipulat i observat.  És tasca posterior de la mestra anar depurant el llenguatge i anar introduint terminología més precisa, com evaporació, vapor d’aigua, o, per als més grans, densitat, fluidesa o gravetat, lligades a altres observacions fetes anteriorment.

Experiment de la pell de l’aigua

També és el moment de la pregunta que espontàniament surt, i que obre una cadena infinita de preguntes: “Per què passa això que passa?“. La resposta als perquès passa ineludiblement per fer referència a la ciència coneguda i la inclusió de nous conceptes més abstractes. I, finalment i com a culminació, és el moment dels “Què passaria si…”  per obrir la perspectiva de futur, dels experiments mentals i l’especulació sobre possibles nous experiments. Aquestes són les quatre etapes de tot procés experimental: Què hi ha, que li passa, per què li passa i què passarà.

Pel camí, i intercalats en tot moment, els fonaments de la lògica i la deducció científica hi són omnipresents, al nivell adequat  a cada edat.  N’haviem vist algun exemple a una entrada anterior [+]  Totes aquestes activitats no són encara química ni física, però en són els fonaments. I això ho ha de poder fer un mestre no especialista en ciències, com fa llengua o motricitat. I ho fan ben fet, si estan motivats i ben orientats.

Preparant el got d’aigua que no es buida perquè hi ha un paper

Trasvassament d’aigua amb un sifó


ÚS DEL LEGO EN L’ENSENYAMENT DE LA QUÍMICA A SECUNDÀRIA

07/07/2017

Aquesta entrada va especialment per a professors de química de secundària. És el resum de la meitat d’una conferència invitada que vaig presentar a la recent reunió biennal de la Real Sociedad Española de Química (Sitges, 25 a 28 de juny de 2017). És, al seu torn, un resum de l’article publicat a la revista Educació en Química, que pot descarregar-se des d’aquí [+]

No hi ha dubte de l’eficàcia de l’ús d’analogies quan són usades correctament. L’analogia entre l’estructura de la matèria i les construccions del LEGO està força estesa, i el propòsit d’aquesta entrada és fer-ne una crítica tot assenyalant-ne els diversos problemes que genera si s’aplica malament.

Quan, el 1963, es va crear el sistema LEGO les peces eren de formes simples: paral·lelepípedes de diferents gruixos, amplades, alçades i colors, cilindres, plaques i poca cosa més. Amb els anys han augmentat moltíssim el nombre i varietat de peces disponibles, com finestres, rodes, eixos o figures humanes completes des de 1974. Moltes de les peces actuals són dissenyades ad hoc per construir una determinada estructura, en una filosofia molt llunyana de la original, però molt més propera al consumidor actual, menys preocupat pel procés de construcció que pel resultat final. Aquesta ha estat també l’evolució d’altres joguines de construcció com Meccano. En l’analogia que es comenta aquí s’usen només les peces de LEGO genèriques del sistema original.

És trivial usar LEGO per a la maquetació en tota mena de camps, també en la química, com taules periòdiques [+]  o molècules d’ADN. tot i que són molt millors els models moleculars de barres i esferes, o d’espai ple [+] . Aquí no parlem d’això. L’analogia que aquí ens interessa és entre les peces de LEGO i les entitats químiques elementals, àtoms o molècules. Per exemple, Izquierdo et al.  [2011, “Química a infantil i primària. Una nova mirada” Ed. Graó, Barcelona. p. 73-84]  fan ús de les peces de LEGO per visualitzar les reaccions que tenen lloc en la respiració cel·lular. Anderton  [+]  fa una proposta similar d’igualació de reaccions a partir de manipulació de peces de LEGO. L’edat que aquestes propostes recomanen per fer aquests tallers és al voltant dels 11 a 12 anys.

Figura 1. A i B Formes possibles de la molècula d’aigua, si no esté informació de l’estructura. Les altres formes possibles són topològicament equivalents. C Hipotètica molècula d’H16O, possible segons LEGO però sense existència real.

Els tres punts bàsics de l’analogia LEGO-estructures moleculars són evidents:

  • cada peça individual de LEGO és anàloga a un àtom. Efectivament, cada peça no es pot fer més petita, és indivisible.
  • àtoms diferents venen representats per peces de LEGO diferents. De fet, hi ha moltes més peces de LEGO diferents que tipus d’àtoms, que avui són 118.
  • l’unió de dues peces equival a un enllaç entre dos àtoms. Majoritàriament són enllaços covalents.

Les propostes citades usen el joc bàsicament per explicar un aspecte força abstracte de la reacció química, com és l’estequiometria, és a dir el nombre d’àtoms i molècules que participen d’una reacció. En essència el procediment és ben simple:

  • s’escriu la reacció a modelitzar en la seva versió molecular
  • es construeixen amb LEGO aquestes molècules
  • després, en la reacció les molècules inicials de reactants desapareixen, i els àtoms que les constituïen es reordenen donant noves molècules, els productes, mantenint-se invariable globalment el nombre i tipus d’àtoms del sistema en reacció.

Aquesta és l’analogia. Cal ser conscient de que té un grau d’abstracció considerable. La reacció química escrita en paper és ja una abstracció important de la reacció química vista al laboratori, perquè s’ha passat de veure substàncies reals a fórmules de substàncies. I, a més, ara aquestes fórmules es fan anàlogues a construccions de LEGO, però només pel que fa al nombre i tipus de peces involucrades, i no per la seva forma.  El procés mecànic de combinar peces i imaginar noves molècules no presenta dificultats per als alumnes, especialment si no hi ha limitacions a l’hora de fer propostes de molècules de productes a partir de molècules de reactants. Però, i aquí ve la pega principal, en tot el procés d’analogia és probable que s’hi indueixin espontàniament, per acció o per omissió, diferents errors conceptuals. Cal, per tant, evitar o paliar la consolidació d’aquests errors en les ments dels alumnes, identificant-los per tal d’explicitar-los i procurar que els alumnes en siguin conscients.

Se’n indiquen a continuació els més rellevants.

Concepte erroni 1. Imaginar que les molècules es creen unint directament els àtoms dels seus elements constituents. En realitat els esquemes de reacció per obtenir els diferents productes gairebé mai passen per la síntesi directa a partir dels àtoms constituents: l’àcid sulfúric H2SO4  no s’obté a partir de S, O i H,

Concepte erroni 2. Imaginar que les formes de les peces determinen les possibilitats de fer molècules. Però malauradament les “molècules” modelitzades no tenen per què tenir res a veure ni en forma ni en mida relativa -ni, per descomptat, en colors- amb les molècules reals. Només en alguns casos les “molècules” de LEGO i les reals s’assemblen una mica, com en la molècula de l’aigua feta amb una peça de 4×2 i dues de 1×2 (figura 1). Les formes i mides dels àtoms reals no poden ser representades en absolut amb peces de LEGO, i això és una important limitació operativa.

Concepte erroni 3. Imaginar que, així com en el LEGO es poden unir totes les peces entre elles, tots els àtoms es poden unir entre ells donant molècules. Però, en química, no totes les molècules són possibles.

Concepte erroni 4. Imaginar que, de la mateixa manera que les peces de LEGO es poden unir de formes diverses, els àtoms de les molècules també. Així, la molècula H2O es pot fer amb LEGO unint cada H a l’O, o unint un H a l’O i unint-lo també a l’altre H (H–O–H o H–H–O), però només la primera estructura és correcta.

Concepte erroni 5. Imaginar que, així com en el LEGO una peça pot unir-se amb altres mentres li quedin protuberàncies i buits, l’àtom que la peça representa també pot anar-se unint amb altres àtoms. sense limitació. Però això no és cert.  En l’exemple de la molècula d’aigua, la peça vermella de 2×4 representant l’oxigen podria unir-se, en el límit, amb 16 peces d’1×2 blanques que representen hidrògens, vuit per dalt i vuit per baix. Però l’H16O no existeix (figura 1).

Concepte erroni 6. Imaginar que, de  la mateixa manera que les peces en l’estructura mantenen la seva individualitat, els àtoms en les molècules també la mantenen. Però, de fet, a les molècules -o als metalls, o a les sals, o a les estructures gegants covalents, o a les macromolècules- no hi trobem àtoms com a tals.

Concepte erroni 7. Imaginar que que les reaccions químiques tenen lloc descomponent les molècules dels reactants en els seus àtoms constituents, que després es tornen a reagrupar en altres molècules de productes. Però els mecanismes de reacció són molt més complexos.

Concepte erroni 8. Imaginar que les reaccions tenen lloc completament, és a dir que desapareixen els reactants i es transformen completament en productes. Aquest error és molt comú perquè no es sol distingir prou clarament entre la reacció química a escala de molècules, representada per l’equació química, i la reacció química a escala macroscòpica, on hi poden haver condicions d’equilibri i conversions menors del 100%.

Concepte erroni 9.  Imaginar que les reaccions modelitzables amb LEGO són les úniques existents. Però n’hi ha moltíssimes més, com les reaccions amb metalls, o en dissolució, que  no són prou ben representades amb les peces de LEGO.

Concepte erroni 10. Imaginar que les reaccions tenen lloc d’una forma ràpida, i relacionada amb la rapidesa amb que es poden construir o destruir les estructures de LEGO. La cinètica i el mecanisme de les reaccions no poden ser imaginats veient només l’estequiometria.

Concepte erroni 11. Imaginar que en les reaccions hi ha poca energia involucrada. De fet, el mecanisme real d’unió de dues peces de LEGO entre elles és l’elasticitat del material de que estan fetes, i el fregament, forces molt més febles que les dels enllaços químics.

Concepte erroni 12.  Imaginar que, així com en LEGO es passa directament de les peces individuals als objectes, en la química també es pot passar dels àtoms als objectes per simple creixement de l’estructura. En la realitat hi ha altres estructures intermèdies involucrades, diferents de les molècules, i unides entre elles per enllaços diferents dels covalents.. Això no és possible de visualitzar-ho amb LEGO.

Qualsevol eina didàctica porta implícites determinades limitacions. En el LEGO hi ha una limitació estructural: el joc indueix a visualitzar i imaginar estructures químiques que són molt allunyades de la forma de les estructures reals de la matèria. La segona limitació té a veure amb la reacció química: en cap moment la modelització permet treure cap conclusió sobre aspectes termodinàmics -equilibri, conversió-, o sobre aspectes cinètics -velocitat de reacció- i només permet visualitzar l’estequiometria de les reaccions.

Cal, doncs, que el professor sigui molt conscient de les limitacions de l’analogia LEGO – química, i n’eviti els paranys. Com cal fer en qualsevol altra analogia o metodologia didàctica.

Figura 2.  Reacció de combustió completa del metà visualitzada amb peces de LEGO. A (metà CH4) i B (dues molècules d’oxigen O2) reaccionen donant C (diòxid de carboni CO2) i D (dues molècules d’aigua H2O)

 


CRISPETES

02/09/2016

Stephen Hawking va escriure un llibre que es deia “L’univers en una closca de nou“. Això de la closca de nou és una traducció de nutshell, paraula que en anglès fan servir com a sinònim d'”en poques paraules“. i nosaltres també podriem dir que “Tota la química en una crispeta“. Però hi ha una diferència entre ambdós títols: el primer és fals, i el segon, no tant.

En castellà apareix el terme palomita com a americanisme des de 1925. I més endavant el fan sinònim de roseta, terme que ja hi sortia des de 1901. No sé de quan és el concepte de crispeta en català però deu ser un terme més tardà. En anglès crisp vol dir, entre moltes altres coses, fràgil i fàcil de trencar, i realment una crispeta n’és, però en anglès n’hi diuen popcorn. Al diccionari de Pompeu Fabra no hi figura, però sí al de l’IEC, com a sinònim de rosa derivada dels grans de blat de moro. Al magnífic Corpus de la Cuina Catalana de 2006 hi figuren les crispetes, però remeten a crespells de flor de carbassera, i són flors arrebossades, que es diuen també crispells.

Busco a la Viquipèdia i allà quedo abrumat… En copio només el començament: “(Les crispetes son) també conegudes com a rosetes, roses, bombes, borles, clotxes, coixos, galls, gallets, monges, moresc, agüelos, bufes, esclafites, esclafitons, cotufes/cotufles i catufes, flors, floretes, panissos, petats, petorres, xofes/xufes, senyores o confits de dacsa o de panís” Gairebé tants com el nom del blat de moro, que es diu també panís, moresc, dacsa, i altres.

Bossa de paper per fer crispetes en el forn de microones

Bossa de paper per fer crispetes en el forn de microones

He provat de fer crispetes de diferents llavors seques, sabent que no em sortirien bé: cigrons, llenties, mongetes blanques, mongetes vermelles, faves seques, pèsols secs, i blat de moro. Per, pel que he llegit, també es poden fer crispetes d’amarant i de quinoa, que són dos pseudocereals molt apreciats ara entre la gent que busca coses naturals, superaliments i coses indígenes que aquí no hi siguin. L’amarant és una planta amb moltíssmes varietats, que a Catalunya és coneguda i es considera una mala herba. Algunes varietats són cultivades a l’Amèrica Llatina i se’n mengen les fulles, i ara és apreciada especialment per les llavors. Són uns granets molt petits, especialment demanats perquè té molt manganès, ferro i fósfor. Un pseudocereal és una planta de la que se’n mengen les llavors, però que no és una gramínia -que són herbes i fan espigues- i no té gluten. El fajol o blat negre -el trigo sarraceno– és un exemple de pseudocereal nostrat. La quinoa és també un pseudocereal, emparentada amb els espinacs o les remolatxes. Se’n aprofiten les llavors. Té origen als Andes, com la patata o el blat de moro, i ara es cultiva per tot arreu on hi hagi clima sec i terrenys amb una certa alçària. És un producte car. La llavor té una closca amb molta saponina, compost tòxic i amargant. Se li treu la closca en origen per fer-la comestible i aquestes llavors no permeten fer-ne crispetes.

En la creació de crispetes hi ha tres fenòmens diferents: per un costat hi ha el fet d’escalfar la llavor. Per altra banda hi ha la resistència de la membrana, i finalment hi ha el comportament de la massa calenta de l’interior en posar-se en contacte amb l’atmosfera. Comencem per l’interior del gra. Tots els grans i llavors tenen més o menys la mateixa estructura: solen tenir forma ovalada o esfèrica. En un extrem hi tenen el germen, amb proteïnes vegetals. La resta del gra, que pot ser-ne el 80% o més, és l’endosperma, on hi ha els hidrats de carboni -el midó-, que són l’aliment de l’embrió. La pell o pericarp té una funció protectora, i es presenta en tota una varietat de resistències, permeabilitats i dureses, segons el gra del que es tracti. L’endosperma conté una certa proporció d’humitat. Un gra de blat de moro sol tenir d’un 61 a un 67% de midó, 13 a 16% d’aigua, 8 a 10% de proteïnes, i 3,3 a 4,5% de greixos. Una castanya, que s’escapa del concepte de gra, arriba a tenir fins un 50% d’humitat. En canvi el festuc només un 3%.

A 66ºC aproximadament s’hidrolitza el midó. El midó no és una sola substància química, sinó diverses, especialment amilosa i amilopectina. Són polisacàrids de cadena llarga o molt llarga, sense ramificar o amb ramificacions respectivament, que estan enroscades entre elles. No són solubles en aigua perquè són molècules molt grans, però tenen molècules d’aigua adsorbides -enganxades superficialment- al llarg de la cadena. A temperatures una mica altes les cadenes es separen i l’aigua en facilita l’estovament global. D’aquesta operació se’n sol dir gelatinització, tot i que no té res a veure amb la gelatina, que no n’hi ha. El grànul farinós agafa una consistència de gel, però no es nota des de fora perquè un gra de blat de moro està cobert pel pericarpi, que és la membrana exterior, i és molt dens en fibres de cel•lulosa, cosa que el fa resistent i impermeable a la humitat i al vapor d’aigua. Un gra de blat de moro és un recinte totalment tancat. Ni n’entra ni en surt aigua, ni vapor, ni gasos. És més hermètic que un ou. I, en canvi, tots els altres grans i llavors tenen la pell molt més fina i fàcil de pelar.

Des de fa uns quants anys que s’ha divulgat el mecanisme de formació de les crispetes en revistes d’aquí (Sapiña 2005 [+]; Courty & Kierlik Investigación y Ciencia juny 2014, p.88-89), però val la pena tornar-hi a fer una repassada, lligant-ho amb altres processos similars. El midó del blat de moro, com el d’altres espècies, està en forma de grànuls en forma de polígons irregulars d’uns 0,01 mm de mida característica, que tenen al seu interior una petita cavitat de l’ordre de 0,0005 mm de diàmetre. Allà hi ha aigua que està unida amb enllaços febles a les molècules d’amilosa i amilopectina. A 100ºC aquesta aigua no bull, perquè no és aigua líquida pura, però els enllaços febles es fan més febles encara, i les molècules d’aigua poden començar a mobilitzar-se i a alliberar-se de les cadenes del midó, al mateix temps que el midó es gelatinitza. L’aigua està en part en forma de vapor, però la major part és aigua líquida sobreescalfada en equilibri amb el vapor, a la pressió corresponent a la temperatura que tingui el gra. I a mida que s’escalfa la pressió va augmentant fins que és prou alta com perquè el gra rebenti. Això passa a uns 180ºC, i la pressió interior a aquesta temperatura seria d’uns 9000 hPa, que són unes 9 atmosferes de pressió.

Aquest fenomen està relacionat amb el que haviem vist al blog en l’entrada “Ou dur al microones“. (Mans 2012 [+]). Allà un ou dur es reescalfava tant per dintre que rebentava en tallar-lo, perquè la clara actuava de membrana impermeable que frenava l’augment de pressió de l’interior del rovell.

Ou dur al microones, un cop rebentat

Ou dur al microones, un cop rebentat


Tot això d’explosions en recintes tancats té molta importància a la indústria, i fins i tot a la cuina. Alguna vegada he explicat que a casa meva, una de les primeres olles de pressió -la primera “olla del pito“, comprada a Andorra els anys 60- li va explotar a la meva àvia. De fet l’olla no va explotar en el sentit que rebentés, sinó que es va desprendre la tapa perquè estava mal apretada. Hi havia dins verdura bullint, i anava desprenent vapor per la vàlvula, el “pito”. No sé quina causa, potser un cop, va fer que la pestanya de subjecció rellisqués, va quedar la tapa lliure. I va volar fins al sostre. L’olla de pressió només està a 1,2 o 1,4 atmosferes, i això no és gaire: un encenedor de butà o una ampolla de xampany estan a molta més pressió. Però el que va passar és un fenomen una mica similar al de la crispeta: mentre està a pressió, tenim dins de l’olla aigua sobreescalfada, posem a 120ºC. I en treure la tapa, l’aigua es posa a bullir bruscament i se’n vaporitza molta, i tot vaporitzant-se la massa es refreda, perquè aigua a 120ºC i a la pressió atmosfèrica no pot existir. I es refreda aplicant l’energia que li sobra -de 120 a 100ºC- a porcions d’aigua que es vaporitzen bruscament. Es generen uns quants litres de vapor d’aigua. Però el problema és que es generen a tota la massa en ebullició, i les bombolles generades engeguen tota la massa en ebullició cap amunt, i en surt una bona part cap a l’exterior. La massa calenta i pastosa de bledes a 100ºC o més pot anar a la cara de qui estigui per allà, i aquest és el principal risc, a part del cop de la tapa: una cremada notable. Per sort, no va passar,però les bledes van anar per tota la cuina, això sí. I encara podriem relacionar tot això amb la catàstrofe dels Alfacs del 1978, on un camió de propilè reescalfat va trencar-se per la dilatació del líquid interior, i en trencar-se la cisterna es va expandir bruscament tot el contingut. Vaig fer-ne un article ja fa anys [+].

Per què no s’escampa tot el midó per les parets del recipient? Això és degut a les propietats del midó de blat de moro. Les molècules d’amilosa i amilopectina no es descomponen, però amb l’alta temperatura de l’interior, podriem dir que poden relliscar les unes sobre les altres. En el moment en que esclata la pell, baixa bruscament la pressió, i l’aigua sobreescalfada de l’interior passa a vapor, s’expandeix i deforma la massa pastosa de midó. És prou pastosa com per deformar-se i inflar-se, però prou consistent i viscosa com perquè no surti en forma de gotetes independents. A més, en expandir-se el vapor d’aigua, la massa es refreda una mica, i n’augmenta la viscositat. El resultat és la forma esponjosa típica de la crispeta.

Grans i crispetes de blat de moro i d'amarant

Grans i crispetes de blat de moro i d’amarant


Tot això es pot calcular a partir de la física i la química, i hi ha qui ho ha fet. (Hunt, 1991. The Physics Teacher, abril p.230-235; Quinn et al,, 2004 [+]). Per tot plegat la quantitat d’aigua al gra de blat de moro és crucial: massa poca aigua faria que no hi hagués prou pressió interna per esclatar. Massa aigua faria que la massa del midó fos massa fluida i no sortís una bona crispeta. Sembla que el valor òptim és entre 13 i 14% d’humitat. I això s’aconsegueix només amb algunes varietats de blat de moro.

Per fer quatre números, vaig agafar 100 grans (grans, no grams) de blat de moro crus, de la varietat adequada per fer crispetes. Pesaven 15,4 g, i tenien un volum aparent de 22 mL, que és el volum que realment ocupen, no els volums de cadascun dels grans sumats. Al volum aparent s’hi compta també l’espai buit que queda entre grans. Poso una cullerada d’oli (4,4 g) a la paella, i al cap d’una estona a foc viu surten crispetes. 87 de bones, inflades, 12 de dolentes, i n’ha desaparegut una d’esmicolada. Totes ocupen 200 mL -volum aparent, també- , és a dir que s’han inflat gairebé deu vegades. En alguns estudis s’arriben a incrementar el volum fins a 30 vegades. Les crispetes finals pesen 16,7 g. És a dir que en el procés de “crispació” s’han perdut 2,1 g, en part per l’oli que mulla la paella, però també pel vapor d’aigua que s’ha escapar de les crispetes. Les crispetes en tenien un 13% (és a dir 2 g d’aigua). Podem suposar que s’ha perdut molt més de la meitat d’aigua en forma de vapor, i de fet algunes anàlisis mostren que les crispetes tenen només un 2 a 4% d’humitat. Hi ha dispositius comercials per fer crispetes més grans, i es basen en fer que s’inflin al buit. Així l’aigua pot expandir-se més, i tenen més valor comercial.

Les crispetes d’amarant són menys vistoses. A la foto se’n poden veure algunes. Els granets d’amarant són molt petits, menys d’1 mm de diàmetre, i les crispetes que en surten són també molt petitetes. No s’inflen tant com les de blat de moro. I no totes rebenten. Potser cal fer servir un amarant especial per crispetes, com es fa servir un blat de moro especial de crispetes. Els meus resultats en el cas de l’amarant són molt mediocres.

Les crispetes que he fet venen a tenir una densitat d’uns 0,08 g/mL, que és molt poc. Però encara es poden fer de menys densitat. Hi ha empreses que es dediquen a fer crispetes per a embalar objectes fràgils. Les propietats mecàniques de la crispeta són, des d’aquest punt de vista, millors que les del polistirè expandit o porexpan: són més elàstiques, menys denses, biodegradables i es poden fabricar in situ, cosa que el porexpan no ho permet.

Quan vagis al cinema, pots demanar les teves crispetes, salades o dolces, en racions de 150 g, 225 g o una galleda sencera, on no hi deu haver menys de 500 g. Això i una beguda dolça de litre, el berenar ideal… per als propietaris del cinema, que hi guanyen més amb els menús que amb les entrades. Una ració de crispetes salades de 150 g aporta 750 kcal, més d’un terç del total del dia. I amb una cola de mig litre 200 kcal més… I hi ha qui s’estranya de que hi hagi obesitat infantil i juvenil.

Un "menú" de cine.

Un “menú” de cine.


QUATRE NOUS (?) ELEMENTS QUÍMICS

15/06/2016

(Actualitzat 30-11-16)

Estem parlant dels elements 113, 115, 117 i 118. Nous, nous no són.

L’element 113 (ununtri) potser es va sintetitzar el 2003 a Dubna, Rússia, i amb tota seguretat a RIKEN, Japó, el 2004, laboratori que en té la prioritat. Primer el van detectar amb un únic àtom, i després n’han vist uns quants més. Per això la IUPAC acaba de proposar, a suggeriment del RIKEN, per a aquest element el nom nihonium (símbol Nh), derivat d’una de les formes de pronunciar en japonès el nom de Japó (日本) nihon. També s’havien suggerit japonium, rikenium i nishinsnium (de Nishina, físic japonès).

L’element 115 (ununpenti) es va sintetitzar a Dubna, Russia en una col•laboració amb el laboratori Lawrence Livermore, EUA. Se’n han observat fins al moment uns cent àtoms. Tant Dubna com Livermore tenen ja noms d’elements químics (el dubni i el livermori, respectivament) i per aixo han suggerit a la IUPAC el nom de moscovium Mc, Dubna és a 140 km de Moscú, dins de la regió metropolitana, la oblast o província de Moscú.

Dr. Yuri Oganessian, de  DUBNA. Fes clic per ampliar.

Dr. Yuri Oganessian, de DUBNA. Fes clic per ampliar.


L’element 117 (ununsepti) va ser descobert el 2010 per un equip rus-americà de Dubna i l’Oak Ridge National Laboratory de Tennessee, i també va ser produit per un equip germano-americà. La prioritat va ser pels primers, que van proposar el nom de tennessine Ts, de Tennessee, obviament. Primer l’ORNL va sintetitzar californi amb finalitats comercials, del que van extreure 22 mg de berkeli Bk, subproducte de la síntesi del californi. L’isòtop de berkeli té una vida mitja de 330 dies, i van tardar-ne 150 a refredar-lo i purificar-lo químicament. En un avió comercial el van enviar a Dubna, però les autoritats russes es van negar a acceptar-ne l’entrada dues vegades per problemes burocràtics, o sigui que els menys de 22 mg de berkeli va creuar l’Atlàntic cinc vegades, fins que finalment el contenidor va ser portat a Dubna, quan ja quedava poc temps per fer l’experiment. Van detectar finalment l’element 117. Atès que van participar al seu descobriment diversos laboratoris, inclosos els que van confirmar els resultats, fer una proposta de nom va resultar conflictiu, i es van decidir finalment per donar-li el nom de la regió on hi ha el laboratori que va començar el procés. Té l’avantatge de que tennessine pot acabar amb naturalitat en -ine, com el nom en anglès de tots els elements del grup 17 (fluorine, chlorine, bromine…).

L’element 118 (ununocti) va ser sintetitzat inicialment a Dubna el 2002, i com tots aquests elements, és radiactiu i molt inestable. Només se’n han sintetitzat alguns àtoms. El director de la recerca ha estat Yuri Oganessian, que havia participat també a totes les síntesis dels elements anteriors. Per això el nom proposat ha estat el de oganesson Og, que acaba en -on, com tots els elements del grup 18 en anglès: argon, neon, krypton…, excepte l’helium. Investigadors de Berkeley havien proposat abans el nom de ghiorsium Gh en honor d’Albert Ghiorso, líder del grup que havia reclamat que l’havien sintetitzat abans. Però Ninov, membre del seu equip, va ser acusar de frau per publicar dades falses sobre les síntesis dels elements 116 i 118, i fou expulsat.

Els elements, doncs, no són nous. Els seus descobriments tenen ja uns anys. El que és nou és que la IUPAC ha obert el procés de donar-los noms formals. Fins novembre hi ha temps de rebatre’n les propostes.

Com s’han de dir en català? En Pep Anton Vieta pronostica que probablement s’acabin dient nihoni, moscovi, tennessi i oganessó. A l’espera de que l’Institut d’Estudis Catalans dicti la seva decisió, fem-hi alguns comentaris.

Sobre el nihonium Nh. El nom del país que aquí coneixem com a Japó té dues pronúncies en japonès, cap de les quals s’assemblen a “Japó”. Els mateixos signes es poden llegir de dues maneres, una més formal (Nippon) i una altra més col•loquial (Nihon), amb una h aspirada que sona més nijon que nion. Aquí parlem de la cultura nipona, no nihona. Per tant, una opció en català seria dir-ne niponi. Si sembla millor nihoni, hi hauria també l’opció d’escriure nioni, sense l’h que no pronunciarem. O nijoni, si ens volem acostar a la pronúncia nipona (com fem amb el laurenci, de lawrencium, malgrat que sí que escrivim berkeli i no berqueli, en contradicció amb l’argument anterior). El símbol Nh no correspondria a algunes d’aquestes propostes, però la discrepància entre noms dels elements i els seus símbols és habitual en totes les llengües.

Sobre el moscovium Mc. Sembla indubtable que s’acabarà dient moscovi, sense conflictes. Aquí diem Moscú, però moscovita. No té objecte, doncs, un hipotètic moscuvi.

Sobre el tennessine Ts. La lògica seria dir-ne en català tennessi. Només hi ha el problema de la similitud de pronúncia amb el tecneci. Però aquestes similituds són abundoses en els noms dels elements. Vegem sodi i rodi; cesi i ceri; tal•li i tuli; radi i rodi; i la tripleta erbi, terbi i iterbi. Val a dir que tennessi i tecneci s’assemblen més i, per tant, hi ha més probabilitat d’errors.

Sobre l’oganesson Og. No sembla que hi hagi d’haver cap problema en dir-n’hi oganessó, malgrat que és un nom realment lleig. La terminació segueix la regla d’accentuar l’o final del grup 18.

Tots aquests elements no tenen per ara cap valor pràctic, naturalment, més enllà de la recerca bàsica, com és la validació o no dels models atòmico-nuclears predits ja fa molts anys: Seaborg havia predit cap als 60 una “illa d’estabilitat” amb nuclis amb certs nombres de protons i neutrons, i amb penes i treballs els científics s’hi van acostant

Els nous símbols ajuden una mica als jocs de paraules químics basats en els símbols dels elements. Og introdueix una vocal, cosa que sempre va bé. I la ubicació del Ts permet fer una paraula diagonal més en la sopa de símbols en català: PoTs. O sigui que l’article que vaig escriure “Sopes de símbols“, inclòs al llibre “La Química de cada dia“, ja és antiquat [+].

Ubcació dels nous elements, amb els seus símbols provisionals

Ubcació dels nous elements, amb els seus símbols provisionals

AMPLIACIÓ 20-6-16. El prof. Nagayasu Nawa m’amplia la informació sobre el nihonium i els noms japonesos:
In Japanese language, “nihon” might be equal with “nippon” for almost all Japanese people. We use both of them. You could see “nippon” more than “nihon” because “nippon” had been recommended by a council on Japanese language in 1934, although it was not adopted formally by Government. So we feel that nihonium looks like nipponium very much. IUPAC news on 8 June 2016 said, “While presenting this proposal, the team headed by Professor Kosuke Morita pays homage to the trailblazing work by Masataka Ogawa done in 1908 surrounding the discovery of element 43. [+]

Masataka Ogawa (1865 – 1930) was a Japanese chemist known for the discovery of rhenium, which he named nipponium. [+] On 10 June, in a TBS radio program, Dr. Masanori Kaji at Tokyo Institute of Technology described the historical background of Japanese name of element. For example, “san-so” for oxygen means origin of acid, is similar in another language. “sui-so” for hydrogen means origin of water, “ti-sso” for nitrogen means suffocating gas, “en-so” for chlorine means origin of salt. These names ending “-so” were translated to Japanese by Udagawa, Yoan (1798-1846) who studied Western chemistry in Dutch language. Another example, “uran” for uranium originates in German “Uran”. And Dr. Kaji gave a detailed explanation of Dr. Masataka Ogawa and so-called illusory nipponium.”

(Actualització 30-11-16)
La IUPAC ha acceptat avui els noms inicialment proposats: nihonium, moscovium, tennessine i oganesson [+]