RAMON LLULL: DUES EXPOSICIONS

18/10/2016
Cartell de l'expo

Cartell de l’expo

Vaig saber qui era Llull estudiant la literatura espanyola al batxillerat elemental, el que ara és l’ESO. Al llibre de text parlaven de Raimundo Lulio, un monjo mallorquí una mica peculiar que anava a terres de moros a convertir-los, i que va escriure el Libro de Amigo y de Amado. Que escrivís en català, ni paraula. El varem estudiar poc, i cap lectura dels seus textos.

Catàleg. Fes clic per ampliar.

Catàleg. Fes clic per ampliar.


Mooolts anys més tard, llegeixo Martin Gardner, al seu llibre Máquinas y diagramas lógicos, de 1958 i segona edició de 1982 (Alianza Editorial, El libro de Bolsillo nº 1091, 1985). El primer capítol del llibre es diu “El Ars Magna de Ramón Llull“. Hi explica la vida de Llull, amb alguns errors menors, i sobre tot, explica la combinatòria inventada per Llull, a partir de la qual es poden construir proposicions filosòfiques i lògiques combinant conceptes. Em vaig sentir estafat pel sistema educatiu: una figura estudiada pel món, i citada elogiosament per Gardner, i a mi no m’ho havia explicat ningú… També Bartolo Luque n’ha parlat recentment [+].
Màquina de calcular de Ralf  Baecker

Màquina de calcular de Ralf Baecker


El mètodes lògics lul•lians es basen en definir algunes paraules o principis bàsics generals, i combinar-los de dos en dos o de tres en tres de totes les formes possibles, fent frases de validesa general. Feia diagrames de dos o tres cercles concèntrics amb termes i conceptes distribuits a cadascun, com Bondat, eternitat, grandesa,… Girant-los de totes les formes possibles obtenia combinacions corresponents a proposicions lògiques diverses, que Llull considerava que donaven tot el coneixement possible. Amb aquests procediments, alguns molt complicats, tediosos i farragosos, va arribar a afirmar que tot el coneixement possible es podia generar allà. I com a exemple pràctic va fer que les seves rodes li generéssin cent sermons diferents, i tots basats en les seves lògiques. Va influir en Giordano Bruno, Jonathan Swift i Leibniz -o Leibnitz- , entre molts altres. i també va ser criticat per Rabelais i Bacon.

Aquest any 2016 fa 700 anys que Llull (c.1232-1316) va morir, als 84 anys i de mort violenta. S’està celebrant l’Any Llull, i a més d’actes i conferències s’han muntat algunes exposicions muntatges. El CCCB ha organitzat una exposició força ambiciosa, amb el nom genèric “La màquina de pensar. Ramon Llull i l’Ars combinatòria”. Hi ha diferents àmbits. El primer, més biogràfic i històric, descrivint el magnífic manuscrit il•lustrat denominat Breviculum de Karlsruhe, actualment a la biblioteca ducal d’aquesta població. Es presenta en una forma animada molt atractiva.

Escala de l'enteniment de Subirachs. Fes clic per ampliar.

Escala de l’enteniment de Subirachs. Fes clic per ampliar.


Rèplica de la màquina de calcular de Leibniz. Fes clic per ampliar.

Rèplica de la màquina de calcular de Leibniz. Fes clic per ampliar.


El segon àmbit, i per a mi el principal, pretén descriure el mètode lul•lià a partir de la visualització i anàlisi d’alguns dels seus textos. El muntatge de la màquina Rechnender Raum (Espai de càlcul) de Ralf Baecker presideix aquest àmbit, junt amb alguns dels llibres de Llull. S’hi citen i mostren aportacions de Dalí, Juan de Herrera, Jonathan Swift, Leibniz, Yturralde, Tàpies, Cirlot, Barbadillo, Oteiza, Subirachs i altres creadors més o ménys vinculats a Llull. La combinatòria en la música és presentada a partir d’obres de Mestres Quadreny i Schönberg. De Raymond Queneau s’hi mostra un exemplar del llibre “Cent mille milliards de poèmes” fet amb una tècnica que hem vist després en llibres infantils: cada pàgina amb moltes frases o paraules és tallada en tires, i pots construir frases o dibuixos agafant una tira de la primera pàgina, una de la segona, etc, i tots els poemes o figures tenen un cert sentit.

A mi m’hauria agradat una mica més d’aprofondiment amb exemples de la combinatòria de Llull, però globalment l’exposició mereix ser vista. El catàleg és molt complet i val la pena.

Dalí: Doble imatge amb cavalls, números i claus. Fes clic per ampliar.

Dalí: Doble imatge amb cavalls, números i claus. Fes clic per ampliar.


A l’Arts Santa Mònica hi ha una instal•lació denominada “Llull Kurokawa.. A la llum de les idees“. Ryoichi Kurakawa (1978) és un artista japonès que fa varietat de tècniques, principalment música i instal•lacions. El fulletó de la instal•lació diu que l’artista fa una prodigiosa interpretació del cosmos, i que la instal•lació ens trasllada a la profunditat de l’univers. No vaig aguantar-ho ni cinc minuts: soroll -diguem-ne sons, per no ofendre; però música no- , llums inconnexes i un text explicatiu pedant i que explica coses que no hi ha. Potser hi ha una lògica interna, però no la sé veure, ni l’expliquen. El mateix que Jo Milne a una exposició que també ara és a Barcelona i comentada a l’anterior post [+].

Cartell de l'exposició Llull Kurokawa

Cartell de l’exposició Llull Kurokawa

Anuncis

LA FAL·LÀCIA DEL CAMPANER

04/09/2016

Primer exemple. Els espinacs i el ferro.

Tots sabem que els espinacs no tenen tant ferro com se’ls atribueix, i que l’origen de l’error va ser una persona que es va equivocar: va transcriure el valor real de ferro en els espinacs, que és de 0,003 g/100 g pel valor 0,03 g/100 g, és a dir deu vegades més. La fama del ferro als espinacs havia començat, i des de 1929 Popeye el mariner devorava espinacs per agafar la fortalesa del ferro. Tot això ho sabem, perquè ho hem llegit a llibres de divulgació, per exemple el meu “La truita cremada” (Mans 2005).

Però tot això que sabem, resulta que és fals. Llegeixo el llibre “Monos, mitos y moléculas” de l’eminent divulgador Joe Schwarcz ) (2015) i al seu capítol “La locura de Popeye” reconeix que ell també havia escrit un capítol de divulgació amb el mateix error. Ell ho atribueix a la seva font, el prof. A.E. Bender, en un article de 1977. Segons Bender, von Wolff el 1870 havia analitzat el ferro als espinacs. Quan el 1937 ho va repetir Schupan i va veure que en tenia molt menys que el que von Wolff havia dit. I Bender va imaginar: “la fama dels espinacs sembla venir d’una coma decimal mal posada“… sense cap evidència de que això fos així!. Hamblin el 1981 ja ho donava per cert en una introducció a un curt article sobre falàcies científiques. Més encara, el creador de Popeye E.Segar mai va atribuir al ferro dels espinacs la força del mariner: ho atribuia, el 1932, a la vitamina A, no al ferro. Però els espinacs tampoc contenen vitamina A, sinó betacarotè, un precursor de la vitamina A, que realment ajuda a mobilitzar el ferro que ja hi hagi a l’organisme. En el meu cas, la meva font de l’error va ser el capítol “Espinacas“, de F.Féron del llibre de Bouvet (1999), que cita com a font l’article de Hamblin, i on afirma -dient que així ho diu la llegenda- que va ser la secretària qui va equivocar-se en passar el manuscrit a màquina.

Popeye i la vitamina A. Fes clic per ampliar

Popeye i la vitamina A. Fes clic per ampliar


El criminòleg Mike Sutton va publicar el 2010 un monumental article en format de conferència (Sutton, 2010) on desmuntava totes aquestes afirmacions. Va dedicar-se a resseguir les fonts originals fins on li va ser possible: els criminòlegs ja ho tenen, això de la minuciositat, al menys els de les sèries de televisió. Sembla que von Wolff es va poder equivocar en fer l’anàlisi inicial, perquè potser es va contaminar la mostra amb ferro del recipient, i no va concretar si la mostra d’espinacs era normal o ja dessecada , cosa que introduiria un esbiaixament crucial. Però no hi ha cap evidència de la llegenda de que algú es va equivocar en transcriure les dades de laboratori a paper. Juan Revenga al seu excel·lent blog sobre nutrició ho ha explicat prou bé [+].

I, per rematar-ho, un plat d’espinacs (180 g) té 6,43 mg de ferro, i en canvi una hamburguesa de 170 g en té 4,42 mg! Però és veritat que el ferro dels espinacs és menys assimilable, encara que això és un altre tema.

Per què uns divulgadors accepten -acceptem- acríticament el que altres han escrit abans? Ho mirarem de respondre al final.

Segon exemple. El rebuig de la universitat de Berna a Einstein

Per la xarxa circula una carta que va escriure el degà de la Facultat de Ciències de Berna, Dr. Wilhelm Heinrich, rebutjant la sol•licitud d’Albert Einstein per ser-ne professor associat. L’argument pel rebuig era que les conclusions d’Einstein sobre la naturalesa de la llum i les relacions espai-temps eren massa radicals, i que eren conclusions “more artistic than actual Physics“. Aquesta carta s’ha fet circular per demostrar que els responsables acadèmics es poden equivocar i de fet s’equivoquen, i que cal promocionar els investigadors joves, encara que defensin idees agosarades. La carta està datada el 1907.

Quan vaig veure la carta, em va fer mala espina, per diversos motius: està escrita en anglès, i m’estranya que un degà de Berna -Suïssa de parla alemanya- es dirigeixi a un estudiant alemany nacionalitzat suís en anglès. A més, el logotip i el timbre de la universitat estan també en anglès. Anecdòticament, a la part superior dreta sembla endevinar-se un segell de correus dels EUA, amb la imatge del mateix Einstein!

Una elemental cerca per Internet permet constatar que es tracta d’una falàcia. Zimmermann (2015) ho explica bé: l’arxiver de la universitat de Berna Niklaus Bütikofer afirma que és una evident i burda falsificació, per tres o quatre detalls: la facultat en aquell moment era de Filosofia, Història i Ciències Naturals; mai hi ha hagut un degà que es digués Wilhelm Heinrich; la llengua de correspondència havia de ser necessàriament l’alemany; el timbre és una modificació d’un escut d’armes hongarès; i el carrer on diu que eés la universitat (Sidlerstrasse)no va dir-se així fins 1931, i el 1907 no hi havia codis postals. Sí que era cert que Einstein va sol•licitar ser associat de la universitat i no li van concedir perquè no complia el requisit de tenir una tesi homologada, però al cap d’un any li va donar la venia docendi.

La suposada carta del degà a Einstein. Fes clic per ampliar

La suposada carta del degà a Einstein. Fes clic per ampliar


Qui va fer aquesta falsificació? Se suposa que és la broma d’un estudiant de física avorrit que volia fer-se un lloc a les xarxes socials…

Però la pregunta és com és que no es veu inmediatament que es tracta d’una falsificació i es reenvia acríticament?

Tercer exemple. Els raigs N

El 1903, investigant sobre raigs X, el físic de la facultat de Ciències de Nancy, prof. René Blondlot, va observar uns raigs diferents, polaritzables, als que va denominar raigs N. Se’n van determinar moltes de les seves propietats, especialment la de promoure la fosforescència de certs compostos, o d’incrementar la llum reflectida en una superfície. Molts investigadors van dedicar-se a estudiar aquests raigs, es registren fotogràficament, se’n observa l’emissió per part de barres imanades, per gasos licuats, per metalls, en determinades reaccions químiques. Altres investigadors reconeguts descobreixen irradiacions fisiològiques de propietats similars, i arriben a resseguir els nervis del cos humà seguint l’emissió d’aquestes irradiacions. Augmenten l’agudesa visual, les vèrtebres en generen… Tot un cos científic nou s’havia creat en un any.

Però el 1904 tot es va desmuntar. Investigadors d’altres equips van ser incapaços de reproduir els resultats, i el 1905 ja ningú parlava del tema. I no eren desconeguts els que van protagonitzar aquest episodi. Eren professors d’universitat o metges d’hospital.

Aquest exemple el vaig llegir de Rostand (1971). Descartada la voluntat d’engany, que sembla clar que no va existir, al menys majoritàriament, la pregunta és com es pot arribar a muntar tot un camp de recerca sense cap base experimental evident?

La fal·làcia del campaner

Llegim Lewis Carroll a “The Hunting of Snark“. Al començament un dels personatges, el Campaner, fa un discurs èpic a la tripulació que va a capturar l’Snark (un monstre indeterminat, el Merma en la traducció de Viana). A la segona estrofa diu:

Just the place for a Snark! I have said it twice:
That alone should encourage the crew.
Just the place for a Snark! I have said it thrice:
What I tell you three times is true.

(La traducció d’Amadeu Viana de 1999 de Biblioteca de la Suda és:

Bon lloc per a un Merma! Dic per segon cop:
vull bons tripulants d’esperit exaltat.
Bon lloc per a un Merma! Dic per tercer cop:
ho he dit ja tres voltes, tres és veritat.
“)

Aquesta és la Fal·làcia del Campaner, que Skrabanek i McCormick van descriure el 1992: la repetició d’una afirmació li dóna versemblança al marge de la seva veracitat.

Portada de "The Hunting of  the Snark" en edició de Martin Gardner (2006). El Campaner és a la part superior. Fes clic per ampliar

Portada de “The Hunting of the Snark” en edició de Martin Gardner (2006). El Campaner és a la part superior.
Fes clic per ampliar


I això és el que ens passa a tots. No comprovem les fonts, malgrat que siguem científics. Però en el camp de la divulgació no actuem com a tals en molts casos. No anem mai a les fonts originals per mandra, però sobre tot per col•leguisme. Implícitament pensem que una persona que fa una feina tan important com la divulgació -que un mateix, com a divulgador, creu que és important, naturalment- sempre diu veritats, deu haver comprovat el que afirma, o té fonts fiables. I massa cops el col•lega ha fet com un mateix: basar-se en un llibre d’un divulgador anterior del qual ens fiem. N’agafem algun exemple vistós, el reescrivim al nostre estil, potser hi afegim alguna aportació addicional no comprovada que faci l’exemple més divertit o més cridaner, però no necessàriament més cert… I la repetició per part d’altres pot incrementar-ne la credibilitat, però no en millora la veracitat: no sé si l’anècdota de la poma que li va caure a Newton va tenir lloc o no, però el fet que tothom ho digui no la fa més certa. El darrer que he llegit és que el seu primer biògraf i amic, present al llarg de les reflexions del savi, no transcriu cap caiguda de poma -i menys al cap- , però sí que Newton parlava de la gravetat posant com a exemple la hipotètica caiguda d’una poma de la pomera sota la que seien, i que segueixen ensenyant a la residència del savi.

Per altra banda, la Viquipèdia en qualsevol de les seves versions -moltes entrades de la qual són simples traduccions de l’anglès- , i que és la primera font de dades complementàries, no és una font prou fiable, i està escrita en massa ocasions per no experts. Pel que fa a dades físiques i químiques, no sol haver-hi cap problema, però per altres dades que requereixen alguna interpretació, pot ser errònia, i no tenim manera de saber-ho perquè no sabem qui ho ha escrit i en molts casos no hi ha referències. I en temes de nutrició, contaminació, perillositat de productes, malalties, pseudociències i camps similars, s’hi veu massa sovint la lluita entre defensors d’una postura i de la contrària. Són temes de difícil moderació.

Tot això posa un cert grau d’incertesa a la fiabilitat dels nostres articles, llibres, blogs i conferències. Seran tan fiables com les nostres fonts, si es tracta de temes que ens són aliens o en els que no hem investigat. O tan fiables com la nostra expertesa i autoritat personal , si estem tractant d’un tema propi de la nostra especialitat. I, evidentment, sempre depenent de l’estat del coneixement global del tema, que pot anar canviant amb el temps, i més en alguns camps científics com els citats en el paràgraf anterior.

El cas dels raigs N té unes connotacions diferents, perquè no es tracta d’errors en la divulgacio, sinó en la creació de ciència. En aquest cas hi havia factors com la voluntat del primer investigador de crear-se una fama com la de Becquerel o Curie descobrint algun tipus de radiació, el seguiment acrític dels seus deixebles, l’enveja dels seus col•legues, el xovinisme i l’estímul de les autoritats franceses per aconseguir superar la ciència anglesa, la no comprovació de resultats amb l’esbiaixament d’eliminar els experiments que no anaven bé a allò que es volia corroborar, … I és que els investigadors científics són també persones humanes, amb les febleses pròpies de l’espècie. La història va plena de situacions similars, moltes vegades amb components polítiques. Recordem Lysenko o el mitxurinisme durant l’època de Stalin a l’URSS. El fals descobriment d’elements químics al llarg dels segles XIX i XX segueix les mateixes pautes (Mans 2010)

Annex per a professors

Un camp on aquests problemes són ben evidents són els llibres de text. En massa ocasions es copien els uns als altres, i a més, potser qui fa les programacions és o ha estat autor de llibres de text. He actuat de corrector extern d’alguns llibres de batxillerat de física i química, i puc afirmar que amb el temps s’han corregit alguns errors mil vegades constatats en edicions anteriors (per exemple la “demostració”l que feia derivar la llei d’acció de masses de la cinètica de les dues reaccions directa i inversa, “demostració” que era només vàlida per a l’exemple concret que s’exposava) però altres errors no hi ha manera que es corregeixin. Destaco especialment el de la descripció del perfil de reacció, on en la figura sempre s’hi introdueix en abcisses un hipotètic avenç de la reacció, un temps de reacció, una coordenada de reacció (concepte genuï però no aplicable més que al món atòmicomolecular). Aquest error no és exclusiu dels textos d’aquí, sinó que en manuals de tota solvència s’hi troba també. He tingut ocasió d’explicar-ho en detall (Mans 2012) però ni cas.

Esquema erroni d'un perfil de reacció. Fes clic per ampliar.

Esquema erroni d’un perfil de reacció. Fes clic per ampliar.


Bibliografia

Bouvet, J-F (coord) (1999) “Hierro en las espinacas… y otras creencias” Taurus- Santillana, Madrid. Trad. de l’original d’Éditions du Seuil (París 1997)

Hamblin, T.J. (1981) “Fake!“, British Medical Journal nº283, pp.1671-1674. [+]
Mans, C. (2005) “La truita cremada“. Ed. del Col•legi de Químics de Catalunya, Barcelona. Trad. al castellà “Tortilla quemada” (2005)

Mans C. (2010) “Els falsos elements” Revista de la Societat Catalana de Química 9/2010, 66-81. [+]

Mans, C. (2012) “Coordenada de reacció?” Educació Química nº 11, p.12-16 [+]

Rostand, J. (1971) “Ciencia falsa y falsas ciencias“, Biblioteca General Salvat, Barcelona. Trad. de l’original d’Ed. Gallimard (París 1958).

Schwarcz, J (2015) “Monos, mitos y moléculas” Pasado&Presente, Barcelona.

Sutton, M. (2010) “Spinach, iron and Popeye: Ironic lessons from biochemistry and history on the importance of healthy eating, healthy scepticism and adequate citation” [+]

Zimmermann, M. (2015) “The Einstein forgery[+]


QUATRE NOUS (?) ELEMENTS QUÍMICS

15/06/2016

(Actualitzat 30-11-16)

Estem parlant dels elements 113, 115, 117 i 118. Nous, nous no són.

L’element 113 (ununtri) potser es va sintetitzar el 2003 a Dubna, Rússia, i amb tota seguretat a RIKEN, Japó, el 2004, laboratori que en té la prioritat. Primer el van detectar amb un únic àtom, i després n’han vist uns quants més. Per això la IUPAC acaba de proposar, a suggeriment del RIKEN, per a aquest element el nom nihonium (símbol Nh), derivat d’una de les formes de pronunciar en japonès el nom de Japó (日本) nihon. També s’havien suggerit japonium, rikenium i nishinsnium (de Nishina, físic japonès).

L’element 115 (ununpenti) es va sintetitzar a Dubna, Russia en una col•laboració amb el laboratori Lawrence Livermore, EUA. Se’n han observat fins al moment uns cent àtoms. Tant Dubna com Livermore tenen ja noms d’elements químics (el dubni i el livermori, respectivament) i per aixo han suggerit a la IUPAC el nom de moscovium Mc, Dubna és a 140 km de Moscú, dins de la regió metropolitana, la oblast o província de Moscú.

Dr. Yuri Oganessian, de  DUBNA. Fes clic per ampliar.

Dr. Yuri Oganessian, de DUBNA. Fes clic per ampliar.


L’element 117 (ununsepti) va ser descobert el 2010 per un equip rus-americà de Dubna i l’Oak Ridge National Laboratory de Tennessee, i també va ser produit per un equip germano-americà. La prioritat va ser pels primers, que van proposar el nom de tennessine Ts, de Tennessee, obviament. Primer l’ORNL va sintetitzar californi amb finalitats comercials, del que van extreure 22 mg de berkeli Bk, subproducte de la síntesi del californi. L’isòtop de berkeli té una vida mitja de 330 dies, i van tardar-ne 150 a refredar-lo i purificar-lo químicament. En un avió comercial el van enviar a Dubna, però les autoritats russes es van negar a acceptar-ne l’entrada dues vegades per problemes burocràtics, o sigui que els menys de 22 mg de berkeli va creuar l’Atlàntic cinc vegades, fins que finalment el contenidor va ser portat a Dubna, quan ja quedava poc temps per fer l’experiment. Van detectar finalment l’element 117. Atès que van participar al seu descobriment diversos laboratoris, inclosos els que van confirmar els resultats, fer una proposta de nom va resultar conflictiu, i es van decidir finalment per donar-li el nom de la regió on hi ha el laboratori que va començar el procés. Té l’avantatge de que tennessine pot acabar amb naturalitat en -ine, com el nom en anglès de tots els elements del grup 17 (fluorine, chlorine, bromine…).

L’element 118 (ununocti) va ser sintetitzat inicialment a Dubna el 2002, i com tots aquests elements, és radiactiu i molt inestable. Només se’n han sintetitzat alguns àtoms. El director de la recerca ha estat Yuri Oganessian, que havia participat també a totes les síntesis dels elements anteriors. Per això el nom proposat ha estat el de oganesson Og, que acaba en -on, com tots els elements del grup 18 en anglès: argon, neon, krypton…, excepte l’helium. Investigadors de Berkeley havien proposat abans el nom de ghiorsium Gh en honor d’Albert Ghiorso, líder del grup que havia reclamat que l’havien sintetitzat abans. Però Ninov, membre del seu equip, va ser acusar de frau per publicar dades falses sobre les síntesis dels elements 116 i 118, i fou expulsat.

Els elements, doncs, no són nous. Els seus descobriments tenen ja uns anys. El que és nou és que la IUPAC ha obert el procés de donar-los noms formals. Fins novembre hi ha temps de rebatre’n les propostes.

Com s’han de dir en català? En Pep Anton Vieta pronostica que probablement s’acabin dient nihoni, moscovi, tennessi i oganessó. A l’espera de que l’Institut d’Estudis Catalans dicti la seva decisió, fem-hi alguns comentaris.

Sobre el nihonium Nh. El nom del país que aquí coneixem com a Japó té dues pronúncies en japonès, cap de les quals s’assemblen a “Japó”. Els mateixos signes es poden llegir de dues maneres, una més formal (Nippon) i una altra més col•loquial (Nihon), amb una h aspirada que sona més nijon que nion. Aquí parlem de la cultura nipona, no nihona. Per tant, una opció en català seria dir-ne niponi. Si sembla millor nihoni, hi hauria també l’opció d’escriure nioni, sense l’h que no pronunciarem. O nijoni, si ens volem acostar a la pronúncia nipona (com fem amb el laurenci, de lawrencium, malgrat que sí que escrivim berkeli i no berqueli, en contradicció amb l’argument anterior). El símbol Nh no correspondria a algunes d’aquestes propostes, però la discrepància entre noms dels elements i els seus símbols és habitual en totes les llengües.

Sobre el moscovium Mc. Sembla indubtable que s’acabarà dient moscovi, sense conflictes. Aquí diem Moscú, però moscovita. No té objecte, doncs, un hipotètic moscuvi.

Sobre el tennessine Ts. La lògica seria dir-ne en català tennessi. Només hi ha el problema de la similitud de pronúncia amb el tecneci. Però aquestes similituds són abundoses en els noms dels elements. Vegem sodi i rodi; cesi i ceri; tal•li i tuli; radi i rodi; i la tripleta erbi, terbi i iterbi. Val a dir que tennessi i tecneci s’assemblen més i, per tant, hi ha més probabilitat d’errors.

Sobre l’oganesson Og. No sembla que hi hagi d’haver cap problema en dir-n’hi oganessó, malgrat que és un nom realment lleig. La terminació segueix la regla d’accentuar l’o final del grup 18.

Tots aquests elements no tenen per ara cap valor pràctic, naturalment, més enllà de la recerca bàsica, com és la validació o no dels models atòmico-nuclears predits ja fa molts anys: Seaborg havia predit cap als 60 una “illa d’estabilitat” amb nuclis amb certs nombres de protons i neutrons, i amb penes i treballs els científics s’hi van acostant

Els nous símbols ajuden una mica als jocs de paraules químics basats en els símbols dels elements. Og introdueix una vocal, cosa que sempre va bé. I la ubicació del Ts permet fer una paraula diagonal més en la sopa de símbols en català: PoTs. O sigui que l’article que vaig escriure “Sopes de símbols“, inclòs al llibre “La Química de cada dia“, ja és antiquat [+].

Ubcació dels nous elements, amb els seus símbols provisionals

Ubcació dels nous elements, amb els seus símbols provisionals

AMPLIACIÓ 20-6-16. El prof. Nagayasu Nawa m’amplia la informació sobre el nihonium i els noms japonesos:
In Japanese language, “nihon” might be equal with “nippon” for almost all Japanese people. We use both of them. You could see “nippon” more than “nihon” because “nippon” had been recommended by a council on Japanese language in 1934, although it was not adopted formally by Government. So we feel that nihonium looks like nipponium very much. IUPAC news on 8 June 2016 said, “While presenting this proposal, the team headed by Professor Kosuke Morita pays homage to the trailblazing work by Masataka Ogawa done in 1908 surrounding the discovery of element 43. [+]

Masataka Ogawa (1865 – 1930) was a Japanese chemist known for the discovery of rhenium, which he named nipponium. [+] On 10 June, in a TBS radio program, Dr. Masanori Kaji at Tokyo Institute of Technology described the historical background of Japanese name of element. For example, “san-so” for oxygen means origin of acid, is similar in another language. “sui-so” for hydrogen means origin of water, “ti-sso” for nitrogen means suffocating gas, “en-so” for chlorine means origin of salt. These names ending “-so” were translated to Japanese by Udagawa, Yoan (1798-1846) who studied Western chemistry in Dutch language. Another example, “uran” for uranium originates in German “Uran”. And Dr. Kaji gave a detailed explanation of Dr. Masataka Ogawa and so-called illusory nipponium.”

(Actualització 30-11-16)
La IUPAC ha acceptat avui els noms inicialment proposats: nihonium, moscovium, tennessine i oganesson [+]


LA CIÈNCIA EN LA LITERATURA

08/09/2015
Portada del llibre. Publicacions i Edicions de la Universitat de Barcelona, col·lecció Catàlisi

Portada del llibre.
Publicacions i Edicions de la Universitat de Barcelona, col·lecció Catàlisi

Fa dues hores -ara són les 21:15 del 8-9-15- que s’ha presentat a la Fira del Llibre en Català 2015 el llibre de Xavier DuranLa ciència en la literatura“, que té com a subtítol “Un viatge per al història de la ciència vista per escriptors de tots els temps“. Xavier Duran és un assagista ben conegut, que des de la seva doble condició de químic i periodista ha aunat sempre la literatura i la ciència, amb més de trenta llibres escrits i diversos premis literaris i de divulgació. Han presentat el llibre en David Jou, professor de Física Teòrica, assagista i poeta, i Jordi Elias, professor de Teoria de la Literatura i Literatura Comparada. El llibre ha estat publicat per Publicacions i Edicions de la Universitat de Barcelona, dins de la col•lecció Catàlisi que dirigeix encertadament el professor de Genètica David Bueno. (l’haig de deixar bé perquè tinc un llibre pendent de publicar en aquesta col•lecció… Disculpa, David, la broma).

El llibre és extens: 364 pàgines. I intens. Resumir tres mil anys de literatura buscant-ne les relacions amb la ciència, no és fàcil. I més si deixa fora, per trivial, la ciència ficció -exceptuant-ne notables autors clàssics, com Mary Shelley o H.G.Wells– i dedicant només dues pàgines a Verne, un “hàbil extrapolador”, en paraules de Duran. No hi he vist, en una primera mirada, res d’Asimov, que a més de divulgador científic, va escriure també notables contes de ciència-ficció, però al segle XX.

177 cites d’autors literaris de tot arreu i de tots els temps, d’Homer a Virginia Woolf, de Jaume Cabré a Dante, de Shakespeare a Dolors Monserdà. Poesia i prosa, novel•la o assaig, de totes les literatures, amb més abundor de la occidental. Els autors catalans hi són ben representats, però no sobrerepresentats. Com han dit els presentadors, l’autor va començar a agafar materials per al llibre fa més de trenta anys, i el té escrit des de fa temps, a l’espera d’editor. Ell mateix confessa que el text original era el doble del que finalment ha vist la llum, però per raons editorials n’ha hagut de resumir alguns capítols, i treure’n algunes parts. I, tot i això, el llibre és monumental…

El llibre és escrit cronològicament , però hi ha alguns trossos en que, per coherència, agafa una perspectiva temàtica. Efectivament, el tema de la medicina i la malaltia és transversal, molts literats n’han fet menció i al llibre es pot trobar , intercalada al llarg dels capítols, tota una història de la relació entre l’home i la malaltia i els metges que la pretenen guarir.

El llibre, com el matiex autor ha dit, es pot llegir un capítol rere l’altre, buscant-ne un tema a l’índex i seguint-lo, o obrint-lo a l’atzar i llegint el que hi trobis. Aquesta darrera forma és la que he fet servir fins ara.

Després de fer-ne la ressenya, ara només em falta llegir-me el llibre de veritat…

Felicitats, Xavier.


SÓN CENT MILIONS

23/06/2015
Son cent milions...

Son cent milions… Fes clic per ampliar.

Els químics ho celebrem /celebrarem amb xampany: a les 17:38 (hora de casa), just abans de la nit màgica de la revetlla de Sant Joan el nombre de substàncies registrades pel CAS Registry. han arribat a cent milions. 100000000.

Com ho sabem? Quan un laboratori fa una investigació i resulta que identifica una nova substància en una planta tropical, o sintetitza una nova molècula per veure si pot ser un medicament, o identifica un nou mineral, ho escriuen en forma d’article científic, i proven de publicar-ho en una de les revistes que, a milers, s’editen en paper o per la xarxa. Algunes d’aquestes revistes -la majoria- són de pagament, d’altres són d’accés obert. La major part de les revistes tenen un sistema de revisors –peer review-que jutgen si l’article proposat és adequat per a la revista, si té el nivell de qualitat suficient, si està prou ben escrit, si els resultats que s’hi escriuen són reproduibles per altres laboratoris, etc. Els revisors solen ser anònims, i de les mateixes especialitats científiques que els autors. Si els revisors hi estan d’acord, l’article es posa a la cua i un dia o altre surt publicat. Aquest sistema és criticat i té molts punts febles, però és acceptat a manca d’un de millor.

Algunes d’aquestes revistes surten citades pels diaris, com Nature o Science: són de les més famoses, molt citades, i on tothom aspira a publicar. Però n’hi ha milers, i cadascuna té un índex d’impacte diferent: com més ímpacte, més es valora, perquè després la promoció personal depèn d’on has publicat els teus treballs. La revista de més impacte el 2014 és la CA-A Cancer Journal for Clinicians, amb un impacte de 115. Nature és la que més cites té, més de 600000 a l’any, amb un impacte de 42. De les 8600 revistes indexades n’hi ha 74 d’Espanya, la de més impacte la Revista Española de Cardiología, amb un factor de 3,79. Hi ha 580 revistes de química, i encapçala el rànquing la Chemical Reviews, amb 137000 cites i un impacte de 46. I n’hi ha 134 d’enginyeria química, encapçalades per Energy & Environmental Science, amb 36000 cites l’any i un factor de 20.

Un cop publicat un article en una revista, la que sigui, comença una nova etapa: la indexació i registre d’aquell article. Hi ha publicacions especialitzades en llegir-se toooots els articles que es publiquen d’una determinada matèria, fer-ne un resum i publicar-ne els resums. L’any 1830 es va fundar a Leipzig la primera d’aquestes revistes de resums en el camp de la química, en alemany, i que resumia totes les revistes conegudes europees i americanes en qualsevol idioma. Primer es va dir Pharmaceutisches Centralblatt, El 1850, i vista la predominància de la química en el món farmacèutic, va passar a dir-se Chemisch-Pharmazeutisch Zentralblatt, i finalment el 1856 només Chemisches Zentralblatt. Aquesta revista va durar fins 1969. Havien publicat dos milions de resums. Ara està tot digitalitzat.

El primer número del Chemisches Zentralblatt, encada amb el nom Central-Blatt. Fes clic per ampliar.

El primer número del Chemisches Zentralblatt, encada amb el nom Central-Blatt. Fes clic per ampliar.


A la Biblioteca de Física i Química de la UB tenen el Zentralblatt des de 1897 fins el darrer número. Jo la vaig usar al començament de la meva tesi, i vaig veure aviat que era redundant amb l’altra gran revista de resums que tamé teniem a la biblioteca i que és la que ara té el monopoli d’aquesta temàtica: el Chemical Abstracts.

El Chemical Abstracts en paper a la biblioteca de Física i Química de la UB. Ás sobre hi ha la Taula Periòdica d'Eugènia Balcells. Fes clic per ampliar.

El Chemical Abstracts en paper a la biblioteca de Física i Química de la UB. Ás sobre hi ha la Taula Periòdica d’Eugènia Balcells. Fes clic per ampliar.

El Chemical Abstracts Service (CAS) [+] és una part de la American Chemical Society. Entre moltes altres publicacions, edita des de 1907 la revista de resums Chemical Abstracts. Vegeu-ne una exposició commemorativa del centenari: [+]. Primer era en paper, però ja fa anys que és només a la xarxa. Cada setmana revisa més de 8000 revistes d’originals i els extracta. Tots els químics relacionats amb la recerca acadèmica o industrial l’hem usat i l’usem en una forma o altra. El volum d’informació és tan enorme que s’han desenvolupat moltes eines de selecció i filtratge temàtic que l’interessat pot trobar a la seva web. Per a la tesi jo la vaig usar en paper: buscaves en els seus diversos índexs, seleccionaves alguns articles interessants, i els demanaves per correu ordinari als autors, que te’n enviaven, si volien, una separata: un tros de revista amb el seu article. Per no haver-hi ni fotocopiadores hi havia, encara no eren inventades. Ara es fa tot des de l’ordinador propi.

El 1965 el CAS va crear una innovadora eina: el registre de substàncies, el CAS Chemical Registry. Totes les substàncies descrites en tots els articles de química mundials des de l’inici de les publicacions reben un número de registre segons unes complicades regles, i un registre en magatzema la informació: què és, quines propietats té, qui i on l’han identificat, on surt descrita…

I, què és per al CAS una substància? Doncs, qualsevol de les següents:
• Compostos orgànics com fenol, sacarosa
• Compostos inorgànics com àcid fosfòric, sulfat de praseodimi, carbur de silici
• Metalls com sodi, cobalt, samari
• Aliatges com llautó, acer 18/8, peltre
• Minerals com calcita, coltan
• Compostos de coordinació
• Organometàl•lics
• Elements com nitrogen, xenó, fósfor
• Isòtops com U235, U238
• Partícules nuclears com raigs alfa, positrons
• Proteïnes i àcids nucleics
• Polímers com PVC, PET
• Materials no estructurables (UVCB, Unknown or Variable compositions, Complex reaction products and Biological materials)

Veiem que hi cap de tot, però no tot. La major part de barreges no hi són: una barreja d’aigua i sucre pot tenir infinites composicions, des de tot aigua a tot sucre. Doncs aquests barreges no són substàncies registrades pel CAS. Un rovell d’ou, ben caracteritzat en la seva composició, tampoc.

L’esdeveniment d’avui és que s’ha arribat a la substància 100000000! Cent milions de substàncies! És fàcil de dir, però molt difícil d’imaginar.

Però la major part d’aquestes substàncies ja no existeixen. Han existit però ja no n’hi ha. Es van sintetitzar en el seu dia, es van caracteritzar, es va publicar el procediment d’obtenció i les seves propietats,i amb el pas del temps els laboratoris on es van obtenir les van eliminar perquè no tenien interés pel futur i no cabien als magatzems. Altres substàncies es descomponen amb el temps. I dels elements amb nombre atòmic superior a 110 només se’n han generat i detectat alguns àtoms que no han sobreviscut més d’unes fraccions minúscules de segon…

En el llenguatge quotidià de laboratori i de els indústries es sol parlar més de productes que de substàncies. Sigma-Aldrich [+] es una de les principals empreses fabricants de productes per a laboratori. Té en els seus catàlegs més de 200.000 referències de tot tipus, que pot comercialitzar en diverses formes.. Per exemple té 126 referències per a l’or pur: en nanopartícules, en escames, en lámines i en diferents quantitats d’envàs… Aquestes diferents formes són només un sol número de registre del CAS Registry, el 7440-57-5, perquè totes són or. 200000 són molts productes, però representen només el 2 per mil de les substàncies registrades. I no els tenen tots al magatzem. Alguns productes els sintetitzen sota demanda.

Des de 2007 regeix a Europa i altres paísos el sistema REACH [+] . És un sistema obligatori de Registre, Avaluació, Autorització i restricció de productes químics, per als productes dels que se’n produeixin a Europa o se’n importi un mínim d’una tona a l’any. Fins el el 2015 s’han registrat uns 15.000 productes. D’aquests 15.000, entre el 10 i el 20%, és a decir, entre 1.500 i 3000, es comercialitzen en grans quantitats i el transport per carretera està regulado -si són perillosos- per les directrius del reglament ADR [+] (Agreement concerning the International Carriage of Dangerous Goods by Road) i altres similars per a trens, vaixells i avions.

I el nombre de substàncies no para de créixer. El 4-5-2015 n’hi havia 96565979. això vol dir que el seu número creix a raó de més de 2800 substàncies per hora!

I, quina importància té que hi hagi 100.000.000 substàncies? Cap, naturalment. Només és la màgia dels números rodons. I la demostració de que la ciència avança, també amb la creació de substàncies que no hi ha a la naturalesa, amb els nous riscs, i les noves esperances que comporten. Una pila de científics de totes les edats i de tot arreu està treballant ara i en el temps que has llegit aquest post ja s’han pujat quinze substàncies noves… Mira com va creixent el número aquí:`[+]

Un abstract del Chemical Abstracts, de 1918. No és una literatura apassionant...

Un abstract del Chemical Abstracts, de 1918. No és una literatura apassionant…


TECNECI DOMÈSTIC

29/04/2015

Tros de tecneci metàl·lic. Font: domini públic Internet

Tros de tecneci metàl·lic. Font: domini públic Internet

El tecneci és un metall típic, gris, de punt de fusió molt alt, gran densitat… És l’element químic de nombre atòmic 43, ubicat pel mig de la taula periòdica. Durant molt temps no se’l va identificar a la naturalesa, i va ser molts anys l’element que tothom volia trobar i ningú no ho aconseguia. Es coneixien tots els elements des de l’1 fins el 92 -l’urani- però no es sabia res del 43. D’acord amb el convenciment de tots els químics, que li havien guardat lloc a la taula periòdica, havia d’existir i se l’havia de trobar d’una o altra manera, però res.

Mendeleev li va deixar un forat a la taula periòdica i el va denominar eka-manganès. El 1827 Ossan va dir que l’havia identificat i el va denominar polini, però no ho era, sinó l’iridi, un altre metall. Rose el 1847 el mateix, i li va dir pelopi, però va ser un fals descobriment. El mateix li va passar a Kern (1877) que n’hi va dir davi, i a Barrière el 1896, que el va denominar luci, però era iterbi impur. Ogawa, el 1908 va creure veure’l i n’hi va dir niponi, però era reni impur. Gerber el 1917 va creure que l’havia descobert i n’hi va dir neomolibdè; Basanquet, també el 1924 el va denominar moselei o moseleyi, però realment no era l’element que buscava. I Noddak, el 1925 va creure que l’havia vist i el va denominar masuri. Però res. Nou noms i vuit falsos descobriments. Durant els segles XIX i començament del XX van ser freqüents els falsos descobriments, com podeu llegir de l’article “Els falsos elements”, publicat a la revista de la Societat Catalana de Química (9/2010, p. 66-81) [+]. La química ja no en sabia més.

Fragment de la taula periòdica mural de l'edifici històric de la UB, amb el Masuri Ma al centre, abans de que es descobrís. Foto de l'autor.

Fragment de la taula periòdica mural de l’edifici històric de la UB, amb el Masuri Ma al centre, abans de que es descobrís. Foto de l’autor.

Lawrence havia inventat el ciclotró a Berkeley el 1932. Un ciclotró és un accelerador de partícules elementals. Una combinació de camps elèctrics i magnètics permet que les partícules carregades elèctricament girin i girin amb acceleració progressiva fins a assolir grans velocitats. Jo he vist el ciclotró original i és tan petit que cap a la superfície d’una tauleta: té un diàmetre de 68 cm. A partir d’aquí van anar creixent i evolucionant cap als sincrociclotrons i sincrotons actuals, com l’Alba de Sant Cugat del Vallès (d’uns 80 m de diàmetre) o l’enorme LHC del CERN a Ginebra, amb un diàmetre d’uns vuit km.

Doncs bé, Lawrence va començar a accelerar partícules al seu aparell, que ens podem imaginar com una centrífuga. Quan les partícules estan prou accelerades, surten disparades per una tangent de l’aparell i van a col•lisionar amb algun material posat a la sortida. La gran energia de la col•lisió és capaç de transmutar el material diana i obtenir altres elements no presents anteriorment allà. Són reaccions nuclears, que canvien la naturalesa de la substància. El 1937 va bombardejar molibdè amb nuclis de deuteri -una variant de l’hidrogen-. El producte resultant el va enviar a Carlo Perrier i Emilio Segré, a Sicília. Després d’analitzar-lo hi van descobrir un element nou encara no conegut, al que van donar primer el nom de panormi, i poc després van modificar-lo per tecneci, que en grec vol dir artificial, nom que s’ha mantingut.

Esquema de reaccions nuclears de transmutació del molibdè a ruteni passant per tecneci

Esquema de reaccions nuclears de transmutació del molibdè a ruteni passant per tecneci

Aquest concepte d’artificial requereix una digressió. Un químic és com un que juga amb les lletres. Agafa AMOR i la transforma en ROMA, o en ROM + A, o en MA + OR, o en MOR + A. Posa i treu lletres, però cada lletra es manté. Això són “reaccions químiques“, que conserven els elements, les lletres, però en canvien la composició, el significat: l’hidrogen reacciona amb l’oxigen per donar aigua, però a l’aigua final hi ha nuclis d’hidrogen i d’oxigen. En canvi, imaginem que agafem la O d’AMOR i l’obrim i la torcem fins a fer-ne una U, i la M l’adrecem i la dobleguem fins a fer-ne una N. Podem fer una URNA a partir d’AMOR, però a costa de deixar de tenir la O i la M, que hem transformat en U i N. Això són “reaccions nuclears“, que transmuten els elements. Un procés físic, el somni dels alquimistes que volien transmutar plom en or, i mai van aconseguir.

Doncs el tecneci va ser el primer element químic artificial, obtingut mitjançant una reacció nuclear a partir d’un element diferent, el molibdè de nombre atòmic 42. El bombardeig de molibdè amb deuterons (una variant de nuclis d’hidrogen) va convertir el nucli de 42 protons en un nucli de 43, el de tecneci. Moltes vegades els elements obtinguts així són radioactius i es transformen en altres elements al cap d’un cert temps, i en el cas del tecneci és així. Per això es va pensar que no hi hauria tecneci a la naturalesa, tot i que després se’n ha trobat en molt petites quantitats.

Hi ha molts tipus de nuclis de tecneci, que tenen masses atòmiques entre 95 i 99. Tots tenen les propietats químiques del tecneci, i tots són radioactius, i es descomponen al llarg del temps donant altres elements. Un dels isòtops és el 99mTc, que és tecneci metastable amb un nucli de 43 protons i 56 neutrons. Se sol obtenir actualment per desintegració beta d’un isòtop radioactiu del molibdè, el 99Mo. Aquest tecneci metastable es desintegra rapidament emetent radiació gamma. En sis hores se n’ha desintegrat la meitat, donant un altre isòtop similar, el 99Tc, també radioactiu, però de vida mitjana molt més llarga, que es desintegra finalment a ruteni 99Ru, estable. Aquests isòtops metastables són força comuns, però es descomponen molt ràpidament, i en això el tecneci n’és una excepció.

El tecneci 99mTc és molt usat com a radiotraçador en medicina nuclear, en forma sistemàtica des de 1962. Se’n prepara una dissolució, que s’injecta a algun punt del cos, i es pot seguir per on passa amb un detector de radiació gamma que es fa circular per la superfície de la pell. On es detecta radiació gamma vol dir que hi ha, per exemple, un vas limfàtic per on circula el 99mTc. És la tècnica de la gammagrafia o escintil•lografia. Això permet comprovar connexions entre ganglis, difusió a l’interior dels ossos i moltes altres coses d’interés en diagnòstic.

Generador de tecneci antic. Font: web de T.Gray. Aparell a l'Oak Ridge Museum.

Generador de tecneci antic. Font: web de T.Gray. Aparell a l’Oak Ridge Museum.


Com que el 99mTc té una vida mitja tan curta, no és possible un sistema de comercialització i distribució eficaç del producte. Des de l’any 1968 que es prepara l’isòtop de tecneci a partir d’un precursor comercial, el molibdat de sodi Na299MoO4, de vida mitjana més llarga i obtingut en un reactor nuclear especial. Es posa la càrrega de molibdat a un recipient, suportat per una massa d’òxid d’alumini inert. El molibdat va desintegrant-se a pertecnetat NaTcO4 continuament, amb un període de semidesintegració de 6 hores. Es fa passar una dissolució salina pel llit de molibdat, i s’arrossega el pertecnetat.

El que s’injecta actualment és un líquid que conté partícules molt petites del compost amb tecneci, que se sol denominar nanocol•loïde. Hi ha moltes formes de preparació possibles, com per exemple barrejant pertecnetat de sodi Na99mTcO4 i sulfur d’antimoni Sb2S3, que precipita un sulfur complex de tecneci i antimoni 99mTc-Sb2S3, de mides de partícules entre 7 i 15 nm. Els darrers deu anys s’han patentat molts altres procediments, basats en altres compostos químics. Però la base és sempre l’isòtop de tecneci, l’activitat del qual és independent de quin compost químic formi part. L’activitat radioactiva de tots els materials va decaient amb el temps, i per això el sistema requereix un calibrat continu, per ajustar l’activitat del producte i la dosi que s’ha d’aplicar, que depèn de la massa i l’edat del pacient, i de l’òrgan on s’ha d’injectar.

El cos del pacient evoluciona: quan se li injecta compost de 99mTc comença a emetre radiació gamma tot canviant a 99Tc, i al cap de sis hores hi ha la meitat del primer i la mateixa quantitat del segon. Al cap de dotze hores n’hi ha la quarta part i tres quartes parts, respectivament, i va reduint-se a aquest ritme. Es va evacuant també tot plegat pels mecanismes fisiològics i al cap d’uns quants dies la radioactivitat del pacient és indetectable.

Qui havia de dir als investigadors talians que van detectar el tecneci que quaranta anys després els hospitals d’arreu del món l’usarien… L’era nuclear, que va començar tan malament amb les armes de guerra i les bombes d’Hiroshima i Nagasaki el 1945, i posteriorment amb la guerra freda i la cursa d’armaments de missils nuclears, tenia també la vessant pacífica. El president Eisenhower, militar i impulsor de la guerra freda, el 1953 va pronunciar un discurs davant l’ONU amb el títol “Âtoms per a la pau” -sembla que impulsat per Einstein– on preconitzava l’ús pacífic dels coneixements de la física nuclear per a la indústria, l’energia, el transport i la medicina. L’empresa Ford va crear un premi d’un milió de dòlars per a científics i polítics que treballessin en aquests temes. El primer guanyador va ser Niels Bohr, el 1957. I el darrer, el 1969… el mateix Eisenhower. Els avenços aconseguits han estat espectaculars en poc temps. Començant per les centrals nuclears i acabant pel tecneci de diagnòstic.

Fins ara el tecneci era per a mi un metall de tants, com podria ser el praseodimi o l’hafni: existeixen, no se’n parla, serveixen per algunes coses però no t’afecten. Però ara el tecneci és de la família. Sí, a casa hi ha avui una mica de tecneci. D’aquí aquesta entrada al blog.

Segell postal de la campanya "Atoms for Peace" de 1953 i següents.

Segell postal de la campanya “Atoms for Peace” de 1953 i següents.


UNA EXPOSICIÓ GLOCAL: “CIÈNCIA VISCUDA”

19/04/2015

Portada del fulletó de l'exposició. Un simulador d'ull humà de començament del segle XIX. Fes clic per ampliar.

Portada del fulletó de l’exposició. Un simulador d’ull humà de començament del segle XIX. Fes clic per ampliar.

Cap als 90 es va posar de moda el terme glocal [+] per referir-se a aquells conceptes que, procedents d’una realitat arrelada a un punt concret del territori, et portaven a una actuació o una reflexió sobre conceptes universals, que trascendien molt més enllà de l’àmbit original.

L’exposició “Ciència viscuda” és una exposició glocal. Res de més local que exposar un centenar o més d’objectes conservats en unes quantes escoles públiques i privades del municipi, objectes que formaven – i alguns, formen encara- part dels equips per a l’ensenyament de les ciències experimentals. Són aparells que han estat conservats i, en alguns casos restaurats, per professors i per alumnes que coneixen el valor del patrimoni en tots els seus aspectes. Però aquests objectes locals et porten a una reflexió global.

L’equip bàsic generador de l’exposició “Ciència viscuda” ha estat Vàngelis Villar com a comissari, i Mercè Calpé, Anna Mª Plarromaní i Tura Puigvert en el disseny del projecte, documentació i direcció científica. Han fet una tasca excel•lent, no només de cerca d’objectes, recopilació d’informació i documentació sobre les escoles participants, sino sobre el context en que es desenvolupava la docència des del segle XVIII fins a l’actualitat.

I aquest és l’aspecte universal de l’exposició. Siguis d’on siguis, els conceptes científics s’han explicat -al menys durant dos-cents cinquanta anys- de forma similar, i amb utillatges i equips similars. La prova és que molts dels equips mostrats a l’exposició són d’alta qualitat i adquirits a França, Alemanya o el Regne Unit: eren els mateixos o similars instruments que feien servir als centres d’ensenyament d’aquells paísos. I és possible -o probable, depèn de l’edat que tinguis- que aquesta història local sigui també la teva, encara que siguis d’una altra localitat.

L’exposició té sis àmbits, cadascun il•lustrat amb equips experimentals adients, i amb una breu referència a la història de les escoles participants, història que permet comprendre l’evolució política del país -en aquest cas, Espanya- i les diverses influències ideològiques en el plantejament del què ha de ser l’educació en ciències. Llegint els títols i cadascun dels subtítols dels àmbits és fàcil veure’n l’evolució:

1. Ensenyament científic arran de les activitats professionals. L’ensenyament anterior al segle XIX.
2. Època de gabinets i col•leccions. L’ensenyament al segle XIX.
3. Temps de renovació pedagògica i ciències per a la vida. L’ensenyament al segle XX, les primeres dècades.
4. Experiències magistrals al laboratori. L’ensenyament al segle XX, la postguerra i el franquisme.
5. Pràctiques al laboratori en grup. L’ensenyament al segle XX, període democràtic.
6. Fent camí cap a nous models educatius.

A les fots, uns quants objectes de l’exposició. Fes clic per ampliar-les i veure’n la seqüència de diapositives.

L’exposició és una interpel•lació directa a tothom que és a prop de material com el citat, sigui instituts i centres amb una mica d’història, facultats científiques amb solera, laboratoris municipals històrics, o indústries amb història. El punt bàsic és assumir que el patrimoni no és només l’arquitectònic o el natural. Això les colònies tèxtils o les mines ho han entès perfectament, i les visites museografiades al llarg del Llobregat són ara possibles i molt ben estructurades. Encara recordo el malaguanyat company Carles Parejo quan m’explicava els seus esforços per tal que li deixéssin simplement fotografiar les instal•lacions de la Cros a Badalona quan la derruien. Simplement fotografiar-la, no conservar una cambra de plom de les de fer sulfúric, aquí no tenim tants diners com a la conca del Ruhr. Però ni fotos no li van deixar fer.

Història de l’ensenyament de les ciències experimentals, història del país, històries personals de cadascun dels que miren la mostra. No puc negar que em va frapar veure a l’exposició el laboratori Torres Quevedo de l’empresa ENOSA, un armari -un metre cúbic, més o menys- farcit d’equips instrumentals que permetien i permeten fer demostraacions de física clàssica: mecànica, electricitat, magnetisme i òptica. Al meu centre de batxillerat el van comprar cap a l’any 1960 -àmbit 3, com veieu- i l’hermano que ens va fer algunes demostracions -massa poques- gairebé s’agenollava reverentment davant de l’equip abans d’obrir-ne les portes i treure’n algun dels tresors. Llàstima que erem massa alumnes, no sabiem què anava a fer i no atrapavem gairebé res del que pasava allà. Sí, un petit cotxet accelerava arrossegat per un cordill unit a un pes que queia des de la taula al terra. I això permetia calcular la constant gravitatòria g potser. Però només veiem amb gran satisfacció que el cotxet s’estrellava contra la fusta al cap d’uns segons de còrrer esperitat per la taula… La reverència i la unció amb que aquell trasto era tractat ens donava una idea de la importància que li donava l’escola, això sí. Potser per això vaig veure que la ciència era alguna cosa important, tant com l’ortografia o les matemàtiques. I potser per això vaig fer Química, vés a saber.

No he dit que l’exposició és a Mataró. Si ho hagués posat al començament potser no hauries seguit llegint…

Espai Can Serra, del Museu de Mataró (Carreró 17-19), a 10 min de l’estació de tren.
Horari, fins el 15 de juny: de dimarts a dissabte de 17 a 20, i diumenges i festius, d’11 a 14. A partir del 16 de juny i fins el 15 de setembre, de dimarts a diumenge de 18 a 21. L’1 de maig és tancat.
Es poden fer visites de grups escolars fora d’aquestes hores demanant-ho a 937412930.
El catàleg de l’exposició és en procés d’edició.

Ja t’ho has posat a l’agenda?

Grup de visita del 17-4-2015, guiada per les directores de l'exposició.

Grup de visita del 17-4-2015, guiada per les directores de l’exposició.