RAMON LLULL: DUES EXPOSICIONS

18/10/2016
Cartell de l'expo

Cartell de l’expo

Vaig saber qui era Llull estudiant la literatura espanyola al batxillerat elemental, el que ara és l’ESO. Al llibre de text parlaven de Raimundo Lulio, un monjo mallorquí una mica peculiar que anava a terres de moros a convertir-los, i que va escriure el Libro de Amigo y de Amado. Que escrivís en català, ni paraula. El varem estudiar poc, i cap lectura dels seus textos.

Catàleg. Fes clic per ampliar.

Catàleg. Fes clic per ampliar.


Mooolts anys més tard, llegeixo Martin Gardner, al seu llibre Máquinas y diagramas lógicos, de 1958 i segona edició de 1982 (Alianza Editorial, El libro de Bolsillo nº 1091, 1985). El primer capítol del llibre es diu “El Ars Magna de Ramón Llull“. Hi explica la vida de Llull, amb alguns errors menors, i sobre tot, explica la combinatòria inventada per Llull, a partir de la qual es poden construir proposicions filosòfiques i lògiques combinant conceptes. Em vaig sentir estafat pel sistema educatiu: una figura estudiada pel món, i citada elogiosament per Gardner, i a mi no m’ho havia explicat ningú… També Bartolo Luque n’ha parlat recentment [+].
Màquina de calcular de Ralf  Baecker

Màquina de calcular de Ralf Baecker


El mètodes lògics lul•lians es basen en definir algunes paraules o principis bàsics generals, i combinar-los de dos en dos o de tres en tres de totes les formes possibles, fent frases de validesa general. Feia diagrames de dos o tres cercles concèntrics amb termes i conceptes distribuits a cadascun, com Bondat, eternitat, grandesa,… Girant-los de totes les formes possibles obtenia combinacions corresponents a proposicions lògiques diverses, que Llull considerava que donaven tot el coneixement possible. Amb aquests procediments, alguns molt complicats, tediosos i farragosos, va arribar a afirmar que tot el coneixement possible es podia generar allà. I com a exemple pràctic va fer que les seves rodes li generéssin cent sermons diferents, i tots basats en les seves lògiques. Va influir en Giordano Bruno, Jonathan Swift i Leibniz -o Leibnitz- , entre molts altres. i també va ser criticat per Rabelais i Bacon.

Aquest any 2016 fa 700 anys que Llull (c.1232-1316) va morir, als 84 anys i de mort violenta. S’està celebrant l’Any Llull, i a més d’actes i conferències s’han muntat algunes exposicions muntatges. El CCCB ha organitzat una exposició força ambiciosa, amb el nom genèric “La màquina de pensar. Ramon Llull i l’Ars combinatòria”. Hi ha diferents àmbits. El primer, més biogràfic i històric, descrivint el magnífic manuscrit il•lustrat denominat Breviculum de Karlsruhe, actualment a la biblioteca ducal d’aquesta població. Es presenta en una forma animada molt atractiva.

Escala de l'enteniment de Subirachs. Fes clic per ampliar.

Escala de l’enteniment de Subirachs. Fes clic per ampliar.


Rèplica de la màquina de calcular de Leibniz. Fes clic per ampliar.

Rèplica de la màquina de calcular de Leibniz. Fes clic per ampliar.


El segon àmbit, i per a mi el principal, pretén descriure el mètode lul•lià a partir de la visualització i anàlisi d’alguns dels seus textos. El muntatge de la màquina Rechnender Raum (Espai de càlcul) de Ralf Baecker presideix aquest àmbit, junt amb alguns dels llibres de Llull. S’hi citen i mostren aportacions de Dalí, Juan de Herrera, Jonathan Swift, Leibniz, Yturralde, Tàpies, Cirlot, Barbadillo, Oteiza, Subirachs i altres creadors més o ménys vinculats a Llull. La combinatòria en la música és presentada a partir d’obres de Mestres Quadreny i Schönberg. De Raymond Queneau s’hi mostra un exemplar del llibre “Cent mille milliards de poèmes” fet amb una tècnica que hem vist després en llibres infantils: cada pàgina amb moltes frases o paraules és tallada en tires, i pots construir frases o dibuixos agafant una tira de la primera pàgina, una de la segona, etc, i tots els poemes o figures tenen un cert sentit.

A mi m’hauria agradat una mica més d’aprofondiment amb exemples de la combinatòria de Llull, però globalment l’exposició mereix ser vista. El catàleg és molt complet i val la pena.

Dalí: Doble imatge amb cavalls, números i claus. Fes clic per ampliar.

Dalí: Doble imatge amb cavalls, números i claus. Fes clic per ampliar.


A l’Arts Santa Mònica hi ha una instal•lació denominada “Llull Kurokawa.. A la llum de les idees“. Ryoichi Kurakawa (1978) és un artista japonès que fa varietat de tècniques, principalment música i instal•lacions. El fulletó de la instal•lació diu que l’artista fa una prodigiosa interpretació del cosmos, i que la instal•lació ens trasllada a la profunditat de l’univers. No vaig aguantar-ho ni cinc minuts: soroll -diguem-ne sons, per no ofendre; però música no- , llums inconnexes i un text explicatiu pedant i que explica coses que no hi ha. Potser hi ha una lògica interna, però no la sé veure, ni l’expliquen. El mateix que Jo Milne a una exposició que també ara és a Barcelona i comentada a l’anterior post [+].

Cartell de l'exposició Llull Kurokawa

Cartell de l’exposició Llull Kurokawa


ART CIENTÍFIC -15 TEORIA DE CORDES, REALITAT DE CORDILLS, DE JO MILNE

04/10/2016
Catàleg de l'exposició

Catàleg de l’exposició

Jo Milne [+] és una artista anglesa que treballa a Catalunya, apassionada de la ciència. La seva actual exposició “No faig prediccions sinó excuses” és a l’Espai Volart de la Fundació Vila Casas de Barcelona, fins el 18 de desembre de 2016. De l’exposició n’ hi ha un catàleg amb reproduccions fotogràfiques de totes les obres, i una introducció d’Octavi Rofes, professor del grau de Disseny de l’escola Eina. El títol de l’exposició és una variant del que va dir el físic Richard Feynman (1918-1988), “La teoria de cordes no planteja prediccions sinó excuses“. Era una mica escèptic, en aquell moment, sobre les especulacions que feia la teoria de cordes i de supercordes.

Em costa molt d’entendre la literatura que es fa sobre el fet artístic en general quan deixa de ser descriptiva d’allò que es veu i entra en allò que expressa -o que creu que expressa- l’obra. Un exemple del que no entenc és la frase de Paul Kockelman (2010) sobre l’exposició de Jo Milne, que és al catàleg: “… dos tipus de traducció (o mediació) que es podrien caracteritzar vagament com a traducció material (o canalitzar entre senyalitzadors i interpretants, com circulació) i traducció signficativa (o codificar entre signes i objectes, com interpretació). Així, tal com els codis relacionen signes als objectes (o missatges a referents), els canals relacionen senyalitzadors a interpretants (o emissors a receptors)“.

No ho entenc gaire. Cada paraula és més o menys comprensible, però el conjunt se’m escapa. Em passa el mateix que en la divulgació de determinats conceptes de cosmologia o de mecànica quàntica. Per exemple, Stephen Hawking escriu, a “L’univers en una closca de nou” (2001), que “En els universos membrana, els planetes podrien girar al voltant d’una massa fosca situada en una membrana “ombra” perquè la força gravitacional es propaga en les dimensions addicionals”.

Tampoc ho entenc. Cada paraula és comprensible, però no sé què m’ha dit. Probablement ara ja hagi canviat tot el concepte del text, perquè és de fa quinze anys. No és que retregui a Kockelman o a Hawking el que escriuen, perquè si no ho entenc és degut a la meva ignorància. El que sí que em sembla és que aquesta literatura no és divulgativa.

Imagineu, doncs, la dificultat de comprendre i assumir l’obra de Jo Milne, que uneix el món artístic descrit per Kockelman amb el món de Hawking. Milne intenta fer tangibles i visibles alguns aspectes de la nanotecnologia, o objectes i teories més abstractes, com la teoria de cordes i supercordes, els forats de cuc, els quarks o el big bang.

Ni de l’exposició ni del catàleg em queda clar el procediment de treball de Jo Milne. Fa figures en volum mitjançant impressió 3D o mitjançant cabdells de cordill de niló, i fa representacions en 2D, algunes de les quals semblen projeccions sobre el pla de les figures 3D, i altres de creades directament en 2D. Ha treballat al Citilab [+] , laboratori ciutadà (quoi que ce soit) on desenvolupen projectes elacionats amb arts urbanes i xarxes socials.

Osmocosmo, 2014. Fes clic per ampliar

Osmocosmo, 2014. Fes clic per ampliar

Cap de les representacions de Milne no semblen derivar-se de representacions geomètriques d’equacions matemàtiques de les teories representades, o al menys això no s’explicita enlloc. Els esquemes i representacions no són explicatius ni pretenen ser-ho, a diferència dels dibuixos dels llibres o articles de divulgació, que tampoc solc entendre completament però al menys hi ha un peu de figura explicatiu. Els de Milne són, al meu entendre, només evocatius. Em recorden alguns quadres de l’expressionisme abstracte de Jackson Pollock, volgudament sense significat tangible.

Diversos artistes o pensadors sense una formació específica en ciència estan o han estat fascinats per la ciència. Milne n’és un exemple actual, però pensem en el polític Shimon Peres, mort el setembre de 2016, de qui els seus biògrafs diuen que sentia passió per la nanotecnologia malgrat no haver estudiat res de ciència, només alguns cursos d’agricultura. O Salvador Dalí, que comentarem després.

Figures 3D "The Model is not Manifold", 2015

Figures 3D “The Model is not Manifold”, 2015

No és que les persones fascinades per la ciència l’entenguin. Se’m va encarregar en una ocasió que escrivís un text científic explicatiu per a una revista d’una institució. Em devia sortir massa complicat, perquè la persona que m’ho va encarregar em va dir. “No l’he acabat d’entendre. El llegiré una altra vegada a veure si te’n comprenc l’argument“. Em va costar una mica fer-li entendre que el text científic no té “argument” en el sentit de que no es tracta d’un sil•logisme o d’una proposició lògica, sinó que és una descripció feta amb terminologia experta, que no tothom té, i que qui m’ho criticava no tenia. Un dels problemes de la no-comprensió era el llenguatge que jo havia usat, format per termes dels que l’interlocutor no en comprenia el valor real. Com ens passa -al menys em passa a mi- amb els textos de Kockleman o de Hawking. O molts textos dels suplements culturals dels diaris.

Il·lustració delllibre "L'univers en una closca de nou". Pretén visualitzar dimensions ocultes d'un objecte, fent l'analogia amb estructures tan petites que a ull nu no es veuen. Però en la figura tot són les mateixes 3 dimensions, no dimensions addicionals, impossibles de representar. Fes clic per ampliar.

Il·lustració del llibre “L’univers en una closca de nou”. Pretén visualitzar dimensions ocultes d’un objecte, fent l’analogia amb estructures tan petites que a ull nu no es veuen. Però en la figura tot són les mateixes 3 dimensions, no dimensions addicionals, impossibles de representar. Fes clic per ampliar.

La fascinació per la ciència per part d’un no científic pot venir dels temes que tracta, apassionants en ells mateixos: l’origen de la vida, cap on va l’univers, la reproducció, l’evolució, la psicologia, l’atzar… O potser la fascinació la dóna la metodologia científica, l’aparent exactitut i racionalitat, aparentment tan allunyada de les subjectivitats filosòfica, literària o artística. O de l’admiració cap a un científic determinat, potser per motius que no tenen res a veure amb la ciència que fa: la fascinació per Stephen Hawking -sempre ell- té tan a veure amb el que investiga, com amb la forma com ho divulga, com amb el seu estat físic i la lluita contra la malaltia, que l’ha transformat amb un mite.Les postures polítiques d’Einstein i la seva figura deuen haver estat determinants en la seva projecció pública.

Dalí, que no va ser un científic, era un apassionat de la ciència fins al punt de titular els seus quadres amb noms científics; va fer servir en les seves xerrades o entrevistes termes com desoxirribonucleic -que en la seva peculiar forma de parlar semblava una paraula inventada però el discurs en la que la inseria tenia sentit- i va fer molts quadres amb il•lusions òptiques que requerien un coneixement profund de les teories de la visió i de la percepció. Va experimentar amb l’estereoscòpia, amb hologrames, amb projeccions 3D d’espais 4D.., Va muntar amb Jorge Wagensberg el 1985 el simposi científic “Cultura i ciència: determinisme i llibertat“, amb sis ponències i col•loquis al Teatre-Museu Dalí on hi van anar figures tan importants com René Thom, introductor de la teoria de les catàstrofes, el renovador de la termodinàmica Ilya Prigogine, o Benoit Mandelbrot, creador del concepte de fractals. Entenia res Dalí? En sentit profond, no, però el fascinaven tots aquells conceptes, i en sabia veure on podien arribar a portar.

No sé on he llegit que “en un moment on en el món científic el més important era l’especialització, Dalí ja defensava una postura que avui és un tema de debat molt important: la unitat“. Es tracta de superar les dues cultures, com Ferran Adrià i tants altres creadors han intentat: no fer incompatibles la reflexió i l’emoció. Per al meu gust, per ordre: primer emocionar-se i després reflexionar el per què de l’emoció

Manifestly Manifolded. Cordill de niló, 2015-16

Manifestly Manifolded. Cordill de niló, 2015-16


LA FAL·LÀCIA DEL CAMPANER

04/09/2016

Primer exemple. Els espinacs i el ferro.

Tots sabem que els espinacs no tenen tant ferro com se’ls atribueix, i que l’origen de l’error va ser una persona que es va equivocar: va transcriure el valor real de ferro en els espinacs, que és de 0,003 g/100 g pel valor 0,03 g/100 g, és a dir deu vegades més. La fama del ferro als espinacs havia començat, i des de 1929 Popeye el mariner devorava espinacs per agafar la fortalesa del ferro. Tot això ho sabem, perquè ho hem llegit a llibres de divulgació, per exemple el meu “La truita cremada” (Mans 2005).

Però tot això que sabem, resulta que és fals. Llegeixo el llibre “Monos, mitos y moléculas” de l’eminent divulgador Joe Schwarcz ) (2015) i al seu capítol “La locura de Popeye” reconeix que ell també havia escrit un capítol de divulgació amb el mateix error. Ell ho atribueix a la seva font, el prof. A.E. Bender, en un article de 1977. Segons Bender, von Wolff el 1870 havia analitzat el ferro als espinacs. Quan el 1937 ho va repetir Schupan i va veure que en tenia molt menys que el que von Wolff havia dit. I Bender va imaginar: “la fama dels espinacs sembla venir d’una coma decimal mal posada“… sense cap evidència de que això fos així!. Hamblin el 1981 ja ho donava per cert en una introducció a un curt article sobre falàcies científiques. Més encara, el creador de Popeye E.Segar mai va atribuir al ferro dels espinacs la força del mariner: ho atribuia, el 1932, a la vitamina A, no al ferro. Però els espinacs tampoc contenen vitamina A, sinó betacarotè, un precursor de la vitamina A, que realment ajuda a mobilitzar el ferro que ja hi hagi a l’organisme. En el meu cas, la meva font de l’error va ser el capítol “Espinacas“, de F.Féron del llibre de Bouvet (1999), que cita com a font l’article de Hamblin, i on afirma -dient que així ho diu la llegenda- que va ser la secretària qui va equivocar-se en passar el manuscrit a màquina.

Popeye i la vitamina A. Fes clic per ampliar

Popeye i la vitamina A. Fes clic per ampliar


El criminòleg Mike Sutton va publicar el 2010 un monumental article en format de conferència (Sutton, 2010) on desmuntava totes aquestes afirmacions. Va dedicar-se a resseguir les fonts originals fins on li va ser possible: els criminòlegs ja ho tenen, això de la minuciositat, al menys els de les sèries de televisió. Sembla que von Wolff es va poder equivocar en fer l’anàlisi inicial, perquè potser es va contaminar la mostra amb ferro del recipient, i no va concretar si la mostra d’espinacs era normal o ja dessecada , cosa que introduiria un esbiaixament crucial. Però no hi ha cap evidència de la llegenda de que algú es va equivocar en transcriure les dades de laboratori a paper. Juan Revenga al seu excel·lent blog sobre nutrició ho ha explicat prou bé [+].

I, per rematar-ho, un plat d’espinacs (180 g) té 6,43 mg de ferro, i en canvi una hamburguesa de 170 g en té 4,42 mg! Però és veritat que el ferro dels espinacs és menys assimilable, encara que això és un altre tema.

Per què uns divulgadors accepten -acceptem- acríticament el que altres han escrit abans? Ho mirarem de respondre al final.

Segon exemple. El rebuig de la universitat de Berna a Einstein

Per la xarxa circula una carta que va escriure el degà de la Facultat de Ciències de Berna, Dr. Wilhelm Heinrich, rebutjant la sol•licitud d’Albert Einstein per ser-ne professor associat. L’argument pel rebuig era que les conclusions d’Einstein sobre la naturalesa de la llum i les relacions espai-temps eren massa radicals, i que eren conclusions “more artistic than actual Physics“. Aquesta carta s’ha fet circular per demostrar que els responsables acadèmics es poden equivocar i de fet s’equivoquen, i que cal promocionar els investigadors joves, encara que defensin idees agosarades. La carta està datada el 1907.

Quan vaig veure la carta, em va fer mala espina, per diversos motius: està escrita en anglès, i m’estranya que un degà de Berna -Suïssa de parla alemanya- es dirigeixi a un estudiant alemany nacionalitzat suís en anglès. A més, el logotip i el timbre de la universitat estan també en anglès. Anecdòticament, a la part superior dreta sembla endevinar-se un segell de correus dels EUA, amb la imatge del mateix Einstein!

Una elemental cerca per Internet permet constatar que es tracta d’una falàcia. Zimmermann (2015) ho explica bé: l’arxiver de la universitat de Berna Niklaus Bütikofer afirma que és una evident i burda falsificació, per tres o quatre detalls: la facultat en aquell moment era de Filosofia, Història i Ciències Naturals; mai hi ha hagut un degà que es digués Wilhelm Heinrich; la llengua de correspondència havia de ser necessàriament l’alemany; el timbre és una modificació d’un escut d’armes hongarès; i el carrer on diu que eés la universitat (Sidlerstrasse)no va dir-se així fins 1931, i el 1907 no hi havia codis postals. Sí que era cert que Einstein va sol•licitar ser associat de la universitat i no li van concedir perquè no complia el requisit de tenir una tesi homologada, però al cap d’un any li va donar la venia docendi.

La suposada carta del degà a Einstein. Fes clic per ampliar

La suposada carta del degà a Einstein. Fes clic per ampliar


Qui va fer aquesta falsificació? Se suposa que és la broma d’un estudiant de física avorrit que volia fer-se un lloc a les xarxes socials…

Però la pregunta és com és que no es veu inmediatament que es tracta d’una falsificació i es reenvia acríticament?

Tercer exemple. Els raigs N

El 1903, investigant sobre raigs X, el físic de la facultat de Ciències de Nancy, prof. René Blondlot, va observar uns raigs diferents, polaritzables, als que va denominar raigs N. Se’n van determinar moltes de les seves propietats, especialment la de promoure la fosforescència de certs compostos, o d’incrementar la llum reflectida en una superfície. Molts investigadors van dedicar-se a estudiar aquests raigs, es registren fotogràficament, se’n observa l’emissió per part de barres imanades, per gasos licuats, per metalls, en determinades reaccions químiques. Altres investigadors reconeguts descobreixen irradiacions fisiològiques de propietats similars, i arriben a resseguir els nervis del cos humà seguint l’emissió d’aquestes irradiacions. Augmenten l’agudesa visual, les vèrtebres en generen… Tot un cos científic nou s’havia creat en un any.

Però el 1904 tot es va desmuntar. Investigadors d’altres equips van ser incapaços de reproduir els resultats, i el 1905 ja ningú parlava del tema. I no eren desconeguts els que van protagonitzar aquest episodi. Eren professors d’universitat o metges d’hospital.

Aquest exemple el vaig llegir de Rostand (1971). Descartada la voluntat d’engany, que sembla clar que no va existir, al menys majoritàriament, la pregunta és com es pot arribar a muntar tot un camp de recerca sense cap base experimental evident?

La fal·làcia del campaner

Llegim Lewis Carroll a “The Hunting of Snark“. Al començament un dels personatges, el Campaner, fa un discurs èpic a la tripulació que va a capturar l’Snark (un monstre indeterminat, el Merma en la traducció de Viana). A la segona estrofa diu:

Just the place for a Snark! I have said it twice:
That alone should encourage the crew.
Just the place for a Snark! I have said it thrice:
What I tell you three times is true.

(La traducció d’Amadeu Viana de 1999 de Biblioteca de la Suda és:

Bon lloc per a un Merma! Dic per segon cop:
vull bons tripulants d’esperit exaltat.
Bon lloc per a un Merma! Dic per tercer cop:
ho he dit ja tres voltes, tres és veritat.
“)

Aquesta és la Fal·làcia del Campaner, que Skrabanek i McCormick van descriure el 1992: la repetició d’una afirmació li dóna versemblança al marge de la seva veracitat.

Portada de "The Hunting of  the Snark" en edició de Martin Gardner (2006). El Campaner és a la part superior. Fes clic per ampliar

Portada de “The Hunting of the Snark” en edició de Martin Gardner (2006). El Campaner és a la part superior.
Fes clic per ampliar


I això és el que ens passa a tots. No comprovem les fonts, malgrat que siguem científics. Però en el camp de la divulgació no actuem com a tals en molts casos. No anem mai a les fonts originals per mandra, però sobre tot per col•leguisme. Implícitament pensem que una persona que fa una feina tan important com la divulgació -que un mateix, com a divulgador, creu que és important, naturalment- sempre diu veritats, deu haver comprovat el que afirma, o té fonts fiables. I massa cops el col•lega ha fet com un mateix: basar-se en un llibre d’un divulgador anterior del qual ens fiem. N’agafem algun exemple vistós, el reescrivim al nostre estil, potser hi afegim alguna aportació addicional no comprovada que faci l’exemple més divertit o més cridaner, però no necessàriament més cert… I la repetició per part d’altres pot incrementar-ne la credibilitat, però no en millora la veracitat: no sé si l’anècdota de la poma que li va caure a Newton va tenir lloc o no, però el fet que tothom ho digui no la fa més certa. El darrer que he llegit és que el seu primer biògraf i amic, present al llarg de les reflexions del savi, no transcriu cap caiguda de poma -i menys al cap- , però sí que Newton parlava de la gravetat posant com a exemple la hipotètica caiguda d’una poma de la pomera sota la que seien, i que segueixen ensenyant a la residència del savi.

Per altra banda, la Viquipèdia en qualsevol de les seves versions -moltes entrades de la qual són simples traduccions de l’anglès- , i que és la primera font de dades complementàries, no és una font prou fiable, i està escrita en massa ocasions per no experts. Pel que fa a dades físiques i químiques, no sol haver-hi cap problema, però per altres dades que requereixen alguna interpretació, pot ser errònia, i no tenim manera de saber-ho perquè no sabem qui ho ha escrit i en molts casos no hi ha referències. I en temes de nutrició, contaminació, perillositat de productes, malalties, pseudociències i camps similars, s’hi veu massa sovint la lluita entre defensors d’una postura i de la contrària. Són temes de difícil moderació.

Tot això posa un cert grau d’incertesa a la fiabilitat dels nostres articles, llibres, blogs i conferències. Seran tan fiables com les nostres fonts, si es tracta de temes que ens són aliens o en els que no hem investigat. O tan fiables com la nostra expertesa i autoritat personal , si estem tractant d’un tema propi de la nostra especialitat. I, evidentment, sempre depenent de l’estat del coneixement global del tema, que pot anar canviant amb el temps, i més en alguns camps científics com els citats en el paràgraf anterior.

El cas dels raigs N té unes connotacions diferents, perquè no es tracta d’errors en la divulgacio, sinó en la creació de ciència. En aquest cas hi havia factors com la voluntat del primer investigador de crear-se una fama com la de Becquerel o Curie descobrint algun tipus de radiació, el seguiment acrític dels seus deixebles, l’enveja dels seus col•legues, el xovinisme i l’estímul de les autoritats franceses per aconseguir superar la ciència anglesa, la no comprovació de resultats amb l’esbiaixament d’eliminar els experiments que no anaven bé a allò que es volia corroborar, … I és que els investigadors científics són també persones humanes, amb les febleses pròpies de l’espècie. La història va plena de situacions similars, moltes vegades amb components polítiques. Recordem Lysenko o el mitxurinisme durant l’època de Stalin a l’URSS. El fals descobriment d’elements químics al llarg dels segles XIX i XX segueix les mateixes pautes (Mans 2010)

Annex per a professors

Un camp on aquests problemes són ben evidents són els llibres de text. En massa ocasions es copien els uns als altres, i a més, potser qui fa les programacions és o ha estat autor de llibres de text. He actuat de corrector extern d’alguns llibres de batxillerat de física i química, i puc afirmar que amb el temps s’han corregit alguns errors mil vegades constatats en edicions anteriors (per exemple la “demostració”l que feia derivar la llei d’acció de masses de la cinètica de les dues reaccions directa i inversa, “demostració” que era només vàlida per a l’exemple concret que s’exposava) però altres errors no hi ha manera que es corregeixin. Destaco especialment el de la descripció del perfil de reacció, on en la figura sempre s’hi introdueix en abcisses un hipotètic avenç de la reacció, un temps de reacció, una coordenada de reacció (concepte genuï però no aplicable més que al món atòmicomolecular). Aquest error no és exclusiu dels textos d’aquí, sinó que en manuals de tota solvència s’hi troba també. He tingut ocasió d’explicar-ho en detall (Mans 2012) però ni cas.

Esquema erroni d'un perfil de reacció. Fes clic per ampliar.

Esquema erroni d’un perfil de reacció. Fes clic per ampliar.


Bibliografia

Bouvet, J-F (coord) (1999) “Hierro en las espinacas… y otras creencias” Taurus- Santillana, Madrid. Trad. de l’original d’Éditions du Seuil (París 1997)

Hamblin, T.J. (1981) “Fake!“, British Medical Journal nº283, pp.1671-1674. [+]
Mans, C. (2005) “La truita cremada“. Ed. del Col•legi de Químics de Catalunya, Barcelona. Trad. al castellà “Tortilla quemada” (2005)

Mans C. (2010) “Els falsos elements” Revista de la Societat Catalana de Química 9/2010, 66-81. [+]

Mans, C. (2012) “Coordenada de reacció?” Educació Química nº 11, p.12-16 [+]

Rostand, J. (1971) “Ciencia falsa y falsas ciencias“, Biblioteca General Salvat, Barcelona. Trad. de l’original d’Ed. Gallimard (París 1958).

Schwarcz, J (2015) “Monos, mitos y moléculas” Pasado&Presente, Barcelona.

Sutton, M. (2010) “Spinach, iron and Popeye: Ironic lessons from biochemistry and history on the importance of healthy eating, healthy scepticism and adequate citation” [+]

Zimmermann, M. (2015) “The Einstein forgery[+]


CRISPETES

02/09/2016

Stephen Hawking va escriure un llibre que es deia “L’univers en una closca de nou“. Això de la closca de nou és una traducció de nutshell, paraula que en anglès fan servir com a sinònim d'”en poques paraules“. i nosaltres també podriem dir que “Tota la química en una crispeta“. Però hi ha una diferència entre ambdós títols: el primer és fals, i el segon, no tant.

En castellà apareix el terme palomita com a americanisme des de 1925. I més endavant el fan sinònim de roseta, terme que ja hi sortia des de 1901. No sé de quan és el concepte de crispeta en català però deu ser un terme més tardà. En anglès crisp vol dir, entre moltes altres coses, fràgil i fàcil de trencar, i realment una crispeta n’és, però en anglès n’hi diuen popcorn. Al diccionari de Pompeu Fabra no hi figura, però sí al de l’IEC, com a sinònim de rosa derivada dels grans de blat de moro. Al magnífic Corpus de la Cuina Catalana de 2006 hi figuren les crispetes, però remeten a crespells de flor de carbassera, i són flors arrebossades, que es diuen també crispells.

Busco a la Viquipèdia i allà quedo abrumat… En copio només el començament: “(Les crispetes son) també conegudes com a rosetes, roses, bombes, borles, clotxes, coixos, galls, gallets, monges, moresc, agüelos, bufes, esclafites, esclafitons, cotufes/cotufles i catufes, flors, floretes, panissos, petats, petorres, xofes/xufes, senyores o confits de dacsa o de panís” Gairebé tants com el nom del blat de moro, que es diu també panís, moresc, dacsa, i altres.

Bossa de paper per fer crispetes en el forn de microones

Bossa de paper per fer crispetes en el forn de microones

He provat de fer crispetes de diferents llavors seques, sabent que no em sortirien bé: cigrons, llenties, mongetes blanques, mongetes vermelles, faves seques, pèsols secs, i blat de moro. Per, pel que he llegit, també es poden fer crispetes d’amarant i de quinoa, que són dos pseudocereals molt apreciats ara entre la gent que busca coses naturals, superaliments i coses indígenes que aquí no hi siguin. L’amarant és una planta amb moltíssmes varietats, que a Catalunya és coneguda i es considera una mala herba. Algunes varietats són cultivades a l’Amèrica Llatina i se’n mengen les fulles, i ara és apreciada especialment per les llavors. Són uns granets molt petits, especialment demanats perquè té molt manganès, ferro i fósfor. Un pseudocereal és una planta de la que se’n mengen les llavors, però que no és una gramínia -que són herbes i fan espigues- i no té gluten. El fajol o blat negre -el trigo sarraceno– és un exemple de pseudocereal nostrat. La quinoa és també un pseudocereal, emparentada amb els espinacs o les remolatxes. Se’n aprofiten les llavors. Té origen als Andes, com la patata o el blat de moro, i ara es cultiva per tot arreu on hi hagi clima sec i terrenys amb una certa alçària. És un producte car. La llavor té una closca amb molta saponina, compost tòxic i amargant. Se li treu la closca en origen per fer-la comestible i aquestes llavors no permeten fer-ne crispetes.

En la creació de crispetes hi ha tres fenòmens diferents: per un costat hi ha el fet d’escalfar la llavor. Per altra banda hi ha la resistència de la membrana, i finalment hi ha el comportament de la massa calenta de l’interior en posar-se en contacte amb l’atmosfera. Comencem per l’interior del gra. Tots els grans i llavors tenen més o menys la mateixa estructura: solen tenir forma ovalada o esfèrica. En un extrem hi tenen el germen, amb proteïnes vegetals. La resta del gra, que pot ser-ne el 80% o més, és l’endosperma, on hi ha els hidrats de carboni -el midó-, que són l’aliment de l’embrió. La pell o pericarp té una funció protectora, i es presenta en tota una varietat de resistències, permeabilitats i dureses, segons el gra del que es tracti. L’endosperma conté una certa proporció d’humitat. Un gra de blat de moro sol tenir d’un 61 a un 67% de midó, 13 a 16% d’aigua, 8 a 10% de proteïnes, i 3,3 a 4,5% de greixos. Una castanya, que s’escapa del concepte de gra, arriba a tenir fins un 50% d’humitat. En canvi el festuc només un 3%.

A 66ºC aproximadament s’hidrolitza el midó. El midó no és una sola substància química, sinó diverses, especialment amilosa i amilopectina. Són polisacàrids de cadena llarga o molt llarga, sense ramificar o amb ramificacions respectivament, que estan enroscades entre elles. No són solubles en aigua perquè són molècules molt grans, però tenen molècules d’aigua adsorbides -enganxades superficialment- al llarg de la cadena. A temperatures una mica altes les cadenes es separen i l’aigua en facilita l’estovament global. D’aquesta operació se’n sol dir gelatinització, tot i que no té res a veure amb la gelatina, que no n’hi ha. El grànul farinós agafa una consistència de gel, però no es nota des de fora perquè un gra de blat de moro està cobert pel pericarpi, que és la membrana exterior, i és molt dens en fibres de cel•lulosa, cosa que el fa resistent i impermeable a la humitat i al vapor d’aigua. Un gra de blat de moro és un recinte totalment tancat. Ni n’entra ni en surt aigua, ni vapor, ni gasos. És més hermètic que un ou. I, en canvi, tots els altres grans i llavors tenen la pell molt més fina i fàcil de pelar.

Des de fa uns quants anys que s’ha divulgat el mecanisme de formació de les crispetes en revistes d’aquí (Sapiña 2005 [+]; Courty & Kierlik Investigación y Ciencia juny 2014, p.88-89), però val la pena tornar-hi a fer una repassada, lligant-ho amb altres processos similars. El midó del blat de moro, com el d’altres espècies, està en forma de grànuls en forma de polígons irregulars d’uns 0,01 mm de mida característica, que tenen al seu interior una petita cavitat de l’ordre de 0,0005 mm de diàmetre. Allà hi ha aigua que està unida amb enllaços febles a les molècules d’amilosa i amilopectina. A 100ºC aquesta aigua no bull, perquè no és aigua líquida pura, però els enllaços febles es fan més febles encara, i les molècules d’aigua poden començar a mobilitzar-se i a alliberar-se de les cadenes del midó, al mateix temps que el midó es gelatinitza. L’aigua està en part en forma de vapor, però la major part és aigua líquida sobreescalfada en equilibri amb el vapor, a la pressió corresponent a la temperatura que tingui el gra. I a mida que s’escalfa la pressió va augmentant fins que és prou alta com perquè el gra rebenti. Això passa a uns 180ºC, i la pressió interior a aquesta temperatura seria d’uns 9000 hPa, que són unes 9 atmosferes de pressió.

Aquest fenomen està relacionat amb el que haviem vist al blog en l’entrada “Ou dur al microones“. (Mans 2012 [+]). Allà un ou dur es reescalfava tant per dintre que rebentava en tallar-lo, perquè la clara actuava de membrana impermeable que frenava l’augment de pressió de l’interior del rovell.

Ou dur al microones, un cop rebentat

Ou dur al microones, un cop rebentat


Tot això d’explosions en recintes tancats té molta importància a la indústria, i fins i tot a la cuina. Alguna vegada he explicat que a casa meva, una de les primeres olles de pressió -la primera “olla del pito“, comprada a Andorra els anys 60- li va explotar a la meva àvia. De fet l’olla no va explotar en el sentit que rebentés, sinó que es va desprendre la tapa perquè estava mal apretada. Hi havia dins verdura bullint, i anava desprenent vapor per la vàlvula, el “pito”. No sé quina causa, potser un cop, va fer que la pestanya de subjecció rellisqués, va quedar la tapa lliure. I va volar fins al sostre. L’olla de pressió només està a 1,2 o 1,4 atmosferes, i això no és gaire: un encenedor de butà o una ampolla de xampany estan a molta més pressió. Però el que va passar és un fenomen una mica similar al de la crispeta: mentre està a pressió, tenim dins de l’olla aigua sobreescalfada, posem a 120ºC. I en treure la tapa, l’aigua es posa a bullir bruscament i se’n vaporitza molta, i tot vaporitzant-se la massa es refreda, perquè aigua a 120ºC i a la pressió atmosfèrica no pot existir. I es refreda aplicant l’energia que li sobra -de 120 a 100ºC- a porcions d’aigua que es vaporitzen bruscament. Es generen uns quants litres de vapor d’aigua. Però el problema és que es generen a tota la massa en ebullició, i les bombolles generades engeguen tota la massa en ebullició cap amunt, i en surt una bona part cap a l’exterior. La massa calenta i pastosa de bledes a 100ºC o més pot anar a la cara de qui estigui per allà, i aquest és el principal risc, a part del cop de la tapa: una cremada notable. Per sort, no va passar,però les bledes van anar per tota la cuina, això sí. I encara podriem relacionar tot això amb la catàstrofe dels Alfacs del 1978, on un camió de propilè reescalfat va trencar-se per la dilatació del líquid interior, i en trencar-se la cisterna es va expandir bruscament tot el contingut. Vaig fer-ne un article ja fa anys [+].

Per què no s’escampa tot el midó per les parets del recipient? Això és degut a les propietats del midó de blat de moro. Les molècules d’amilosa i amilopectina no es descomponen, però amb l’alta temperatura de l’interior, podriem dir que poden relliscar les unes sobre les altres. En el moment en que esclata la pell, baixa bruscament la pressió, i l’aigua sobreescalfada de l’interior passa a vapor, s’expandeix i deforma la massa pastosa de midó. És prou pastosa com per deformar-se i inflar-se, però prou consistent i viscosa com perquè no surti en forma de gotetes independents. A més, en expandir-se el vapor d’aigua, la massa es refreda una mica, i n’augmenta la viscositat. El resultat és la forma esponjosa típica de la crispeta.

Grans i crispetes de blat de moro i d'amarant

Grans i crispetes de blat de moro i d’amarant


Tot això es pot calcular a partir de la física i la química, i hi ha qui ho ha fet. (Hunt, 1991. The Physics Teacher, abril p.230-235; Quinn et al,, 2004 [+]). Per tot plegat la quantitat d’aigua al gra de blat de moro és crucial: massa poca aigua faria que no hi hagués prou pressió interna per esclatar. Massa aigua faria que la massa del midó fos massa fluida i no sortís una bona crispeta. Sembla que el valor òptim és entre 13 i 14% d’humitat. I això s’aconsegueix només amb algunes varietats de blat de moro.

Per fer quatre números, vaig agafar 100 grans (grans, no grams) de blat de moro crus, de la varietat adequada per fer crispetes. Pesaven 15,4 g, i tenien un volum aparent de 22 mL, que és el volum que realment ocupen, no els volums de cadascun dels grans sumats. Al volum aparent s’hi compta també l’espai buit que queda entre grans. Poso una cullerada d’oli (4,4 g) a la paella, i al cap d’una estona a foc viu surten crispetes. 87 de bones, inflades, 12 de dolentes, i n’ha desaparegut una d’esmicolada. Totes ocupen 200 mL -volum aparent, també- , és a dir que s’han inflat gairebé deu vegades. En alguns estudis s’arriben a incrementar el volum fins a 30 vegades. Les crispetes finals pesen 16,7 g. És a dir que en el procés de “crispació” s’han perdut 2,1 g, en part per l’oli que mulla la paella, però també pel vapor d’aigua que s’ha escapar de les crispetes. Les crispetes en tenien un 13% (és a dir 2 g d’aigua). Podem suposar que s’ha perdut molt més de la meitat d’aigua en forma de vapor, i de fet algunes anàlisis mostren que les crispetes tenen només un 2 a 4% d’humitat. Hi ha dispositius comercials per fer crispetes més grans, i es basen en fer que s’inflin al buit. Així l’aigua pot expandir-se més, i tenen més valor comercial.

Les crispetes d’amarant són menys vistoses. A la foto se’n poden veure algunes. Els granets d’amarant són molt petits, menys d’1 mm de diàmetre, i les crispetes que en surten són també molt petitetes. No s’inflen tant com les de blat de moro. I no totes rebenten. Potser cal fer servir un amarant especial per crispetes, com es fa servir un blat de moro especial de crispetes. Els meus resultats en el cas de l’amarant són molt mediocres.

Les crispetes que he fet venen a tenir una densitat d’uns 0,08 g/mL, que és molt poc. Però encara es poden fer de menys densitat. Hi ha empreses que es dediquen a fer crispetes per a embalar objectes fràgils. Les propietats mecàniques de la crispeta són, des d’aquest punt de vista, millors que les del polistirè expandit o porexpan: són més elàstiques, menys denses, biodegradables i es poden fabricar in situ, cosa que el porexpan no ho permet.

Quan vagis al cinema, pots demanar les teves crispetes, salades o dolces, en racions de 150 g, 225 g o una galleda sencera, on no hi deu haver menys de 500 g. Això i una beguda dolça de litre, el berenar ideal… per als propietaris del cinema, que hi guanyen més amb els menús que amb les entrades. Una ració de crispetes salades de 150 g aporta 750 kcal, més d’un terç del total del dia. I amb una cola de mig litre 200 kcal més… I hi ha qui s’estranya de que hi hagi obesitat infantil i juvenil.

Un "menú" de cine.

Un “menú” de cine.


QUATRE NOUS (?) ELEMENTS QUÍMICS

15/06/2016

(Actualitzat 30-11-16)

Estem parlant dels elements 113, 115, 117 i 118. Nous, nous no són.

L’element 113 (ununtri) potser es va sintetitzar el 2003 a Dubna, Rússia, i amb tota seguretat a RIKEN, Japó, el 2004, laboratori que en té la prioritat. Primer el van detectar amb un únic àtom, i després n’han vist uns quants més. Per això la IUPAC acaba de proposar, a suggeriment del RIKEN, per a aquest element el nom nihonium (símbol Nh), derivat d’una de les formes de pronunciar en japonès el nom de Japó (日本) nihon. També s’havien suggerit japonium, rikenium i nishinsnium (de Nishina, físic japonès).

L’element 115 (ununpenti) es va sintetitzar a Dubna, Russia en una col•laboració amb el laboratori Lawrence Livermore, EUA. Se’n han observat fins al moment uns cent àtoms. Tant Dubna com Livermore tenen ja noms d’elements químics (el dubni i el livermori, respectivament) i per aixo han suggerit a la IUPAC el nom de moscovium Mc, Dubna és a 140 km de Moscú, dins de la regió metropolitana, la oblast o província de Moscú.

Dr. Yuri Oganessian, de  DUBNA. Fes clic per ampliar.

Dr. Yuri Oganessian, de DUBNA. Fes clic per ampliar.


L’element 117 (ununsepti) va ser descobert el 2010 per un equip rus-americà de Dubna i l’Oak Ridge National Laboratory de Tennessee, i també va ser produit per un equip germano-americà. La prioritat va ser pels primers, que van proposar el nom de tennessine Ts, de Tennessee, obviament. Primer l’ORNL va sintetitzar californi amb finalitats comercials, del que van extreure 22 mg de berkeli Bk, subproducte de la síntesi del californi. L’isòtop de berkeli té una vida mitja de 330 dies, i van tardar-ne 150 a refredar-lo i purificar-lo químicament. En un avió comercial el van enviar a Dubna, però les autoritats russes es van negar a acceptar-ne l’entrada dues vegades per problemes burocràtics, o sigui que els menys de 22 mg de berkeli va creuar l’Atlàntic cinc vegades, fins que finalment el contenidor va ser portat a Dubna, quan ja quedava poc temps per fer l’experiment. Van detectar finalment l’element 117. Atès que van participar al seu descobriment diversos laboratoris, inclosos els que van confirmar els resultats, fer una proposta de nom va resultar conflictiu, i es van decidir finalment per donar-li el nom de la regió on hi ha el laboratori que va començar el procés. Té l’avantatge de que tennessine pot acabar amb naturalitat en -ine, com el nom en anglès de tots els elements del grup 17 (fluorine, chlorine, bromine…).

L’element 118 (ununocti) va ser sintetitzat inicialment a Dubna el 2002, i com tots aquests elements, és radiactiu i molt inestable. Només se’n han sintetitzat alguns àtoms. El director de la recerca ha estat Yuri Oganessian, que havia participat també a totes les síntesis dels elements anteriors. Per això el nom proposat ha estat el de oganesson Og, que acaba en -on, com tots els elements del grup 18 en anglès: argon, neon, krypton…, excepte l’helium. Investigadors de Berkeley havien proposat abans el nom de ghiorsium Gh en honor d’Albert Ghiorso, líder del grup que havia reclamat que l’havien sintetitzat abans. Però Ninov, membre del seu equip, va ser acusar de frau per publicar dades falses sobre les síntesis dels elements 116 i 118, i fou expulsat.

Els elements, doncs, no són nous. Els seus descobriments tenen ja uns anys. El que és nou és que la IUPAC ha obert el procés de donar-los noms formals. Fins novembre hi ha temps de rebatre’n les propostes.

Com s’han de dir en català? En Pep Anton Vieta pronostica que probablement s’acabin dient nihoni, moscovi, tennessi i oganessó. A l’espera de que l’Institut d’Estudis Catalans dicti la seva decisió, fem-hi alguns comentaris.

Sobre el nihonium Nh. El nom del país que aquí coneixem com a Japó té dues pronúncies en japonès, cap de les quals s’assemblen a “Japó”. Els mateixos signes es poden llegir de dues maneres, una més formal (Nippon) i una altra més col•loquial (Nihon), amb una h aspirada que sona més nijon que nion. Aquí parlem de la cultura nipona, no nihona. Per tant, una opció en català seria dir-ne niponi. Si sembla millor nihoni, hi hauria també l’opció d’escriure nioni, sense l’h que no pronunciarem. O nijoni, si ens volem acostar a la pronúncia nipona (com fem amb el laurenci, de lawrencium, malgrat que sí que escrivim berkeli i no berqueli, en contradicció amb l’argument anterior). El símbol Nh no correspondria a algunes d’aquestes propostes, però la discrepància entre noms dels elements i els seus símbols és habitual en totes les llengües.

Sobre el moscovium Mc. Sembla indubtable que s’acabarà dient moscovi, sense conflictes. Aquí diem Moscú, però moscovita. No té objecte, doncs, un hipotètic moscuvi.

Sobre el tennessine Ts. La lògica seria dir-ne en català tennessi. Només hi ha el problema de la similitud de pronúncia amb el tecneci. Però aquestes similituds són abundoses en els noms dels elements. Vegem sodi i rodi; cesi i ceri; tal•li i tuli; radi i rodi; i la tripleta erbi, terbi i iterbi. Val a dir que tennessi i tecneci s’assemblen més i, per tant, hi ha més probabilitat d’errors.

Sobre l’oganesson Og. No sembla que hi hagi d’haver cap problema en dir-n’hi oganessó, malgrat que és un nom realment lleig. La terminació segueix la regla d’accentuar l’o final del grup 18.

Tots aquests elements no tenen per ara cap valor pràctic, naturalment, més enllà de la recerca bàsica, com és la validació o no dels models atòmico-nuclears predits ja fa molts anys: Seaborg havia predit cap als 60 una “illa d’estabilitat” amb nuclis amb certs nombres de protons i neutrons, i amb penes i treballs els científics s’hi van acostant

Els nous símbols ajuden una mica als jocs de paraules químics basats en els símbols dels elements. Og introdueix una vocal, cosa que sempre va bé. I la ubicació del Ts permet fer una paraula diagonal més en la sopa de símbols en català: PoTs. O sigui que l’article que vaig escriure “Sopes de símbols“, inclòs al llibre “La Química de cada dia“, ja és antiquat [+].

Ubcació dels nous elements, amb els seus símbols provisionals

Ubcació dels nous elements, amb els seus símbols provisionals

AMPLIACIÓ 20-6-16. El prof. Nagayasu Nawa m’amplia la informació sobre el nihonium i els noms japonesos:
In Japanese language, “nihon” might be equal with “nippon” for almost all Japanese people. We use both of them. You could see “nippon” more than “nihon” because “nippon” had been recommended by a council on Japanese language in 1934, although it was not adopted formally by Government. So we feel that nihonium looks like nipponium very much. IUPAC news on 8 June 2016 said, “While presenting this proposal, the team headed by Professor Kosuke Morita pays homage to the trailblazing work by Masataka Ogawa done in 1908 surrounding the discovery of element 43. [+]

Masataka Ogawa (1865 – 1930) was a Japanese chemist known for the discovery of rhenium, which he named nipponium. [+] On 10 June, in a TBS radio program, Dr. Masanori Kaji at Tokyo Institute of Technology described the historical background of Japanese name of element. For example, “san-so” for oxygen means origin of acid, is similar in another language. “sui-so” for hydrogen means origin of water, “ti-sso” for nitrogen means suffocating gas, “en-so” for chlorine means origin of salt. These names ending “-so” were translated to Japanese by Udagawa, Yoan (1798-1846) who studied Western chemistry in Dutch language. Another example, “uran” for uranium originates in German “Uran”. And Dr. Kaji gave a detailed explanation of Dr. Masataka Ogawa and so-called illusory nipponium.”

(Actualització 30-11-16)
La IUPAC ha acceptat avui els noms inicialment proposats: nihonium, moscovium, tennessine i oganesson [+]


CONF-USA ETIQUETA?

26/05/2016

Orxata contra Lavoisier

Orxata contra Lavoisier

Fa uns dies vaig penjar del meu compte de Facebook una etiqueta d’una orxata que anava visiblement contra la llei de Lavoisier o principi de conservació de la matèria: hi havia més sucres que hidrats de carboni totals. Es tractava d’un error. Fins aquí és una broma.

El 23 de maig de 2016 l’agència Reuters donava a conèixer que la Food and Drugs Administration (FDA) dels EUA havia canviat lleugerament la normativa de l’etiquetat dels aliments envasats. Me’n vaig assabentar via un tuit de la revista Investigación y Ciencia, que ho havia publicat a la seva web [+]
L’objectiu del canvi ha estat facilitar que l’usuari tingui una consciència més clara del que està ingerint, i per aquesta via, si li cal, pugui tenir elements per modificar la seva dieta en un sentit més saludable. Els canvis en els nous criteris alimentaris són deguts als nous coneixements científics adquirits els darrers anys, i especialment dos aspectes: el primer, la necessitat de que es redueixi globalment la ingesta del sucre afegit als aliments, sigui sucre blanc o integral, xarop de fructosa o qualsevol dels altres edulcorants calòrics. El segon criteri és no considerar tan rellevant com fins ara la quantitat de calories procedents dels greixos -factor demonitzat fins fa poc- i destacar només la quantitat de calories totals dels aliments.

La quantitat total de calories es dona ara amb un tipus de lletra més gran i destacada. No s’hi indiquen específicament les calories que provenen dels greixos (tot i que és fàcil de calcular: són els grams de greix multiplicats per 9). I hi apareix una nova ratlla, just a sota dels sucres totals, en que s’indica la quantitat de sucres afegits.

Per a aquesta darrera magnitut s’ha definit un nou valor de la Ingesta Màxima Diària recomanada (els %Daily Values, %DV) . Per a una dieta de 2000 kcal/dia, i pel que fa als sucres afegits, recomanen no superar els 50 g al dia per a majors de 4 anys. La resta de %DV segueixen igual que abans: màxim 65 g de greixos, dels que màxim 20 g de saturats; menys de 300 mg de colesterol; menys de 2400 mg de sodi; i menys de 300 g d’hidrats de carboni totals, inclosa la fibra alimentària (de la que es recomana un màxim de 25 g). Hi ha també valors establerts per a diferents minerals i vitamines, dels que n’hi ha una llarga llista.

Per a aquesta dosi ingerida, i per a cada nutrient, fan constar a l’etiqueta el percentatge que això representa del valor d’ingesta màxima admissible d’aquell nutrient (%DV).

Nutrition facts: etiqueta d'exemple

Nutrition facts: etiqueta d’exemple


Mirem l’etiqueta adjunta, corresponent a algun producte que no se’ns diu quin és, si és que és algun producte si no és només un exemple. Les quantitats que n’hi ha en una ració de 55 g són els valors en grams al costat del nom de cada nutrient.

La informació nutricional que la FDA considera més rellevant és quin percentatge de cada nutrient del total que hem de menjar en un dia com a màxim estem ingerint en cada ració de producte. Aquest és el percentatge que surt en negreta a la dreta de cada nutrient.

Això pot portar a confusió a certs usuaris en llegir les etiquetes, confusió que em consta que es produeix. Veiem de l’etiqueta que en una dosi de producte el total de carbohidrats és de 37 g, i de sucres 12 g, dels que 10 g són sucres afegits. Aquests 37 g de carbohidrats representen el 13% del valor diari admisible de carbohidrats, que és de 300 g. Els 10 g de sucres afegits representen el 20% del seu DV, que és de 50 g. La quantitat absoluta de sucres afegits -10- és, naturalment, molt més petita que la quantitat total de carbohidrats -37-, però en canvi és un percentatge molt més gran de la ingesta diària admissible -20 i 13, respectivament. És lògic, perque el valor de la DV dels carbohidrats (300 g) és sis vegades més gran que el dels sucres afegits (50 g).

Un error que es pot donar en llegir aquesta etiqueta ve donat per un hàbit que tenim arrelat inconscientment: quan veiem percentatges en columna, instintivament els sumem i volem que donin cent. Però aquí no estem parlant d’ingredients, sinó dels diferents nutrients, i un valor no té res a veure amb un altre, ni té cap sentit sumar-los.

A Europa, des del grup d’alt nivell europeu de la Comissió Europea sobre Nutrició i Activitat Física, es recomana als estats membres que segueixin estratègies per reduir el consum de sucres en un 10% per a l’any 2010. Això no és gaire, si es té en compte que a Espanya (dades de 2011) s’ingerien uns 100 g de sucre per part dels homes, el doble que el valor màxim recomanat als EUA. L’Agència Europea de Seguretat Alimentària (EFSA) el 2010 recomanava que la ingesta total de carbohidrats, incloent la fibra alimentària, no fos superior al 45 a 60% de l’energia diària. Per a una dieta de 2000 kcal, això representa un màxim de 1200 kcal. A 4 kcal cada gram de carbohidrat, això implica els 300 g de carbohidrats màxims diaris, coïncidents amb la proposta de la FDA. Pel que fa als sucres afegits, l’EFSA creu que hauria de ser com a màxim del 20% de l’energia diària, basant-se en dades sobre diabetis. Això serien 400 kcal, és a dir 100 g de sucre, el doble que la FDA. La mateixa EFSA reconeix que molts estats membres, quan legislen sobre això, redueixen aquest valor a la meitat, seguint la proposta de la FDA.

A partir de desembre de 2016 a Europa totes les etiquetes de productes preparats -amb algunes excepcions- han de donar les dades nutricionals bàsiques: energia, greixos, greixos saturats, hidrats de carboni, proteïnes, sucres i sal. És opcional indicar altres tipus de nutrients, com àcids grassos mono o poliinsaturats, polialcohols, midó, fibra alimentària, vitamines o una llarga fila de minerals. Aquí no és obligatori, per ara, indicar les quantitats de sucres afegits. És obligatori indicar els nutrients voluntaris si es destaquen a la publicitat.

Aquests valors de nutrients s’han de donar sobre 100 g o 100 mL de producte ingerit. Molts productes ja ho indiquen des de fa anys. Només alguns productes diuen, a més, els valors ingerits per ració ingerida. Un exemple és l’etiqueta adjunta, de Nesquik, que sempre ha donat molta més informació que la obligatòria. Dóna els valors nutricionals per a 14 g de Nesquik i 200 mL de llet semidescremada. Això representa un got de llet amb un parell de culleradetes de producte. En aquesta etiqueta, IR vol dir la Ingesta de Referència d’un adult mitjà, el valor de 2000 kcal . I VRN indica els Valors de Referència de Nutrients, valors sobre els quals s’han fet els càlculs de nutrients.

Si aquesta etiqueta fos feta als EUA, hi sortiria una nova fila de nutrients, la de sucres afegits, que serien 10,6 g, proviments dels 14 g de Nesquik. La resta de sucres per ració, és a dir 9,9 g deriven de la llet, que sol tenir de 4,6 a 5 g de lactosa cada 100 mL. Els sucres afegits del Nesquik, doncs, corresponen a un %IR de 21,5 suposant un valor màxim acceptable de sucres afegits de 50 g/dia. El valor total de carbohidrats per ració és de 21 g, que per a una ingesta màxima de 300 g/dia corresponen a un 7%. Els valors indicats a l’etiqueta són respectivament de 23 i 8%, propers als calculats aquí. La discrepància és atribuible als arrodoniments de decimals.

L’etiqueta USA dóna més informació pràctica, però pot ser més confusa que l’europea, més cartesiana però menys inmediata. El meu pronòstic és que a Europa s’anirà evolucionant cap al model EUA, tant pel contingut com, sobre tot, pel format, avui i aquí molt caòtic.Aquest rectangle blanc amb el títol Nutrition Facts, igual per a tots els productes, és envejable.

Per cert, quin producte deu ser el de l’etiqueta americana? Hi ha 8 racions de 55 g a l’envàs, o sigui que és un envàs de 440 g. Entre greixos (8 g), carbohidrats (37 g) i proteïnes (3 g) hi ha 48 g a cada ració, i la resta deu ser aigua. És un producte força sec, només amb 7 g d’aigua, un 13%. És un producte ensucrat amb 10 g de sucres afegits, i amb 4 g de fibra, greixós i amb sucres dels altres. Es menja a granel, perquè la ració és de 2/3 de tassa, o 55 g. Deu ser un cereal d’esmorzar. En tot cas, és una ració més alta que a que recomanen aquí per a un nen, que és d’uns 30 g.

Informació nutricional del Nesquik actual

Informació nutricional del Nesquik actual


DDT INORGÀNIC, SOFRE ORGÀNIC

28/04/2016

Quan l’Alícia li retreu a Humpty Dumpty que una mateixa paraula no pot tenir dos significats diferents, aquest respon que quan ell usa una paraula significa exactament el que decideix que signifiqui en cada moment. L’Alícia, desconcertada, dubta de que es pugui fer que les paraules tinguin tants significats diferents. I Humpty Dumpty li replica que “la qüestió és qui mana aquí, i res més“.

Qui té la propietat de les paraules? Segons Humpty Dumpty, el qui mana. No són els diccionaris ni les acadèmies, que es limiten a fer de notari de l’ús que té cada paraula en un moment històric, excepte quan fan política i posen o treuen significats a les paraules en funció dels interessos partidistes, com ha fet recentment la RAE.

A una web de menjar ecològic, natural i orgànic, vaig llegir l’afirmació de que el pesticida DDT era rebutjable perquè era inorgànic, i en canvi el tractament de plagues amb sofre era acceptable perquè era orgànic. Si jo repasso la química, està ben clar que el DDT, 1,1,1-Tricloro-2,2-bis(4-clorofenil)età, abans denominat dicloro-dimetil-tricloroetà, és un pesticida organoclorat, clar exemple de molècula de la química orgànica, i en canvi, el sofre és un clar representant d’un no metall inorgànic.

La molècula de DDT

La molècula de DDT

Podriem titllar la web citada d’ignorant i de que no saben química. I potser és cert, però l’ús dels termes inorgànic i orgànic en el sentit oposat al que els químics fem servir no és un simple problema d’ignorància, tant de bo fos només això. Aquest és un exemple més de l’ús d’una terminologia generada en un context i que s’ha escapat i depassat l’àmbit estricte en que estava, que ha colonitzat altres ambients, i que arriba a agafar sentits contraris als originals.

Vegem-ne alguns exemples en altres camps: cap als anys setanta, quan va créixer la preocupació per la contaminació, es va començar a parlar del medi ambient. Tots els esforços dels puristes per fer veure que els termes medi i ambient són quasi sinònims, i que s’havia de parlar només del medi van ser inútils, i medi ambient s’ha quedat.

De la mateixa manera, la preocupació pel medi -ambient- va passar a ser un tema ecologista, no ecològic. No va servir de res que veus autoritzades com Margalef aviséssin de l’ús abusiu d’aquest terme, o que Ramon Folch arribés a escriure un llibre intentant distingir els termes: “Sobre ecologisme i ecologia aplicada“. Res, ecologisme s’ha quedat, convertint la ciència –ecologia– en militància –ecologisme. Ara has de ser ecologista, perquè si no, ningú entén que pots ser respectuós amb el medi o amb pràctiques sostenibles però no ser ecologista militant, és a dir, considerar el respecte al medi com a valor principal orientador de la teva vida i actituds.

Parlar d’agricultura biològica sempre em fa mal a la vista o a l’oida. Com pot ser una agricultura, sinó biològica? No serà geològica… I si n’hi diuen agricultura ecològica, el mateix mal a l’oida o a la vista. Tot ecosistema és descrit per l’ecologia, ciència que explica les relacions entre espècies i el seu medi, i naturalment cada camp cultivat, cada erm o cada bosc són descrits i avaluats amb les eines de l’ecologia, al marge de quin sigui el seu estat, el seu origen, la seva proximitat a l’estat que tenia abans de la intervenció humana o les pràctiques que s’usin per cultivar-lo. Naturalment termes com agricultura biodinàmica, buits de contingut rigorós, són encunyats per aquells que volen vendre’t algun producte diferenciat dels altres, però sense diferències mesurables més enllà de pràctiques ratllant l’esoterisme.

La terminologia científico-culinària és també ambigua. Quan els cuiners parlen d’emulsions, molts cops no parlen del que el químic descriuria com a emulsió, sinó que parlen de suspensions o de gels. Quan el cuiner parla de la gelatinització de les patates, allà no hi gelatina de cap mena, sinó hidratació del midó. Quan alguns cops es cita la caramelització, vol dir reaccions de Maillard o viceversa. I tants altres exemples.

Etiqueta de la producció ecològica a Catalunya

Etiqueta de la producció ecològica a Catalunya

Anem al DDT. És un compost amb enllaços entre carbonis: un compost de la química orgànica, naturalment. Però no. Avui orgànic, per a molta part de la població, és sinònim de biològic o ecològic. És a dir, de producte obtingut sense l’ús de pesticides de síntesi i sense fertilitzants de síntesi, segons està definit en el reglament CE 834/2007, ones parla dels productes ecològics. L’ús del terme orgànic és més habitual als paísos anglosaxons. La normativa legal actual parla d’agricultura biològica o ecològica -un abús, etimològicament parlant- i no d’agricultura o ramaderia orgàniques, però el terme orgànic va entrant aquí amb força. Naturalment, el DDT és un pesticida de síntesi, un químic, i com a tal és rebutjat per l’agricultura ecològica o orgànica. Com que el DDT no és un producte orgànic, el titllen d’inorgànic, perquè el prefix in- té el valor de negació, com a indesitjat, inadequat, inanimat. L’ús del terme inorgànic aquí és en flagrant contradicció amb el terme usat per la química.

Però el sofre és diferent. El sofre és un plaguicida usat en l’agricultura tradicional, en diverses formes. i forma part del catàleg de productes autoritzats en les pràctiques de l’agricultura ecològica, junt amb diversos derivats de coure, el permanganat de potassi, el sabó de potassa, polisulfur de calci, bicarbonat de sodi i altres productes. Per tant, el sofre és, en la terminologia d’aquest entorn, un plaguicida biològic o orgànic. En aquest cas, es dóna la curiosa circumstància que la major part del sofre utilitzat és un subproducte de les refineries, que el treuen de compostos de sofre presents al petroli, com els mercaaptans o tiofens. El petroli, un compost natural i orgànic però fòssil i no sostenible, i per tant d’ús rebutjable segons els principis de la producció ecològica. El sofre, doncs, podem dir que realment és un producte orgànic, ni que sigui estudiat per la química inorgànica, la que en francès es diu chimie minerale

Qui mana en aquesta terminologia? Ja no són els químics, encunyadors dels conceptes de química orgànica o química inorgànica, sinó els practicants de l’agricultura no convencional, els seus seguidors i els mitjans de comunicació generals. Els químics i en general els científics han perdut el seu paper prescriptor de la terminologia.

Aquest canvi de valor dels termes es dóna sempre al llarg del temps. Pensem un cop més en la química orgànica. Aquesta denominació la va inventar Berzelius el 1807, per referir-se als compostos que derivaven dels éssers vivents, compostos que imaginaven que només es podien obtenir des de la biologia: parlem de la sacarosa, de les proteïnes o de la lecitina. Es suposava que els éssers vivents tenien un principi o força vital que els permetia fer aquestes síntesis, en general més complexes que les que es feien als laboratoris d’aquell temps. Però Wöhler, el 1828, va sintetitzar la urea CO(NH2)2 al seu laboratori a partir del cianat d’amoni NH4OCN, que és un compost clàssic obtingut a partir compostos inorgànics. El principi del vitalisme se’n va anar en orris: no calia un ésser viu per obtenir una molècula orgànica, sinó que es podia sintetitzar a partir de productes no derivats dels éssers vius. El concepte de química orgànica tal com l’havia imaginat Berzelius, va passar a voler dir química del carboni, que engloba tots els compostos amb carboni derivats dels éssers vius i tots els altres sintetitzats pels químics i no existents a la naturalesa, com el teflon, el PVC o el DDT. Però es segueix dient química orgànica. I al llarg del segle XX s’han inventat termes com la química bioinorgànica o la química organometàl•lica, que estudien famílies de productes i d’estructures entre la inorgànica i la orgànica. Les sutileses i diferències entre elles les deixarem per als experts.

Fins i tot el concepte química del carboni és també ambigu, perquè compostos com el monòxid de carboni CO, el diòxid de carboni CO2, el cianur d’hidrogen HCN o els carbonats con el de calci CaCO3 són compostos de carboni indubtablement inorgànics, sense relació ni estructural ni de propietats amb altres compostos de carboni. I, si per ser més precisos, volem considerar la química del carboni com la de les molècules en que l’àtom de carboni està unit amb ell mateix amb enllaç covalent, tampoc aquesta és una solució acceptable, perquè en quedaria fora el metà CH4 i tots els seus derivats, com el cloroform CHCl2, el metanol CH3OH o l’àcid fòrmic HCOOH, indubtablement orgànics.

Altres termes químics que han agafat sentits ben diferents del valor científic inicial són els termes alcalinitzant o acidificant, referits a aliments que pretesament acidifiquen o alcalinitzen l’orina, segons les teories no contrastades científicament de Warburg. En aquesta concepció es donen paradoxes com que les llimones serin aliments alcalinitzants.

No, els químics ja no som propietaris de la terminologia química, al menys de la clàssica. Els científics i tècnics ja no som els prescriptors socials ni el que creem tendències, si és que alguna vegada ho hem fet. Són els departaments de publicitat de les empreses de productes de consum els que inventen terminologia no ortodoxa i a vegades sense sentit per suggerir ciència avançada: densoactiu, Calciforte, neosoma. Són els venedors de fum i els esotèrics qui s’apropien de terminologia científica per envoltar els seus inútils productes de respectabilitat científica, inventant denominacions fantasioses com agricultura biodinàmica, constel•lacions familiars, memòria de l’aigua o sanació quàntica amb aquella impunitat, que esgarrifa els científics.

No sé si hi ha res a fer. Però, tanmateix, alguna cosa es deu haver de fer. No es tornarà a l’estadi d’una nomenclatura genuïnament científica, estadi en el que no hem estat mai del tot. Acceptat això, cal que tot científic sgui conscient de quin ús fa la població no experta dels termes amb contingut científic, i aclareixi sistemàticament la diferència: cal tenir una espècie de diccionari de traducció entre lèxic expert i lèxic no expert. Res de nou per als cuiners i científics, però encara poc habitual en altres camps. I, òbviament, educar a tots els nivells sobre les terminologies i el valor diferent de les paraules segons el context.

Per cert, lector, aquest tanmateix del paràgraf anterior, com el traduiries en castellà: “A pesar de todo” o “asimismo“? Estem assistint a un canvi de significat d’aquest terme, que està passant a voler dir el contrari del que volia dir fa uns anys. Cada cop més gent l’usa en el sentit d'”així mateix“, avui per avui incorrecte, perquè vol dir precisament el contrari. Però la pressió popular farà que sigui correcte d’aquí a uns anys.

Sort que ja no ho veuré, que diuen l’avi de La Competència i el senyor Marcel·lí Virgili. Si no saps de qui et parlo, és que som d’universos paral•lels, amb alguns contactes potser, però independents entre ells.


EL GENI CULINARI: UN BON GUIÓ

04/04/2016

Simulació d'un jciment arqueològic amb troballes relatives al primer banquet multitudinari al territori català.

Simulació d’un jciment arqueològic amb troballes relatives al primer banquet multitudinari al territori català.

El Geni Culinari. Innovacions que marquen la nostra cuina és una exposició oberta fins el 26 de juny de 2016 [+] al Museu d’Arqueologia de Catalunya (MAC)..
Poques vegades he vist una exposició amb tan poques peces notables, però amb un guió tan ben travat que fa que no la deixis fins que acabes.
El MAC és ubicat a Montjuïc, molt ben estructurat i endreçat, idoni per a grups escolars per il•lustrar un tema acadèmic -ibers, Grècia, Roma…- però no crec que sigui massa freqüentat pel gran públic. La visita a una exposició temporal pot ser una bona ocasió per tornar-hi. I, de fet, bona part de les peces exposades a l’exposició temporal són del mateix museu.

L’exposició té un guió molt ben estructurat. Parteix d’evidències arqueològiques ben diverses, com són peces de ceràmica, llavors i cereals trobats en jaciments arqueològics, ossos de residus de menjar, i altres objectes que d’entrada semblen banals o nimis. Però a partir dels objectes es construeix un discurs evolutiu de cadascuna de les innovacions culinàries presentades, que tenen a veure amb la cuina, la cocció dels aliments, i la gastronomia. Es descriu així l’evolució del ganivet i les eines de tallar, dels utensilis ceràmics, dels utensilis de ferro, de l’obtenció de sal, i unes quantes innovacions més.

Estris per concentrar sal per evaporació

Estris per concentrar sal per evaporació

I és a partir d’aquí que es visualitzen les evolucions de diferents tipus de cocció i preparacions gastronòmiques avui habituals, com són la paella, l’escudella, la mel i mató, la coca de recapte, les croquetes, les mandonguilles o la carn a la brasa. Per a cada plat hi ha una frase lapidària que en resum la idea principal. Per exemple, “sense ganivet no tindriem mandonguilles“.

La exposició ha estat comissariada per Lluís Garcia, i hi ha col•laborat el Campus de l’Alimentació de Torribera de la UB [+], la Fundació Alícia [+] i la Fundació Institut Català de la Cuina i de la Cultura Gastronòmica [+] . Hi ha activitats paral•leles com conferències o Sopars amb Geni, a càrrec d’Ada Parellada i la Fundació Alícia.

Ceràmiques per contenir l´iquids

Diversos estris antics i moderns

L’exposició ha tingut com a inspiradors Eudald Carbonell [+] i Ferran Adrià [+], arquèoleg i cuiner respectivament, de creativitats ben demostrades en els seus camps. Tots dos van tenir intervencions, junt amb el conseller Santi Vila, el dia de la inauguració.

Per això l’exposició es pot resumir en dues frases: el cuinar ens va fer humans; i el que avui és tradició, algun dia havia estat innovació, i el que avui és innovació, algun dia serà tradició.

L'evolució dels ganivets

L’evolució dels ganivets

Pantalles amb el resum de l'evolució dels diferents plats des de la prehistòria a avui

Pantalles amb el resum de l’evolució dels diferents plats des de la prehistòria a avui


L’ ART CIENTÍFIC QUE M’AGRADA-14. TOMAS SARACENO I LES HYBRID WEBS

07/03/2016

20160220-4 aranyes   (2)

Tomás Saraceno és un arquitecte i artista argentí (San Miguel de Tucumán, 1973) [+] que actualment viu a Frankfurt, Alemanya. El seu llenguatge artístic és molt variat i ha participat a biennals per tot el món. Té projectes artístics molt variats, i ben descrits a la seva web.

El projecte que descrivim és “Hybrid webs“. El va començar el 2012. Usa la diguem-ne creativitat de les aranyes en construir les seves teranyines. L’artista fa estructures de fibra de carboni, que tanca en recintes de vidre, i deixa a una o més aranyes que construeixin la teranyina, que estarà induïda pels entrebancs que l’artista li ha posat. Els animals s’hi estan una, 20160220-4 aranyes   (5)dues o tres setmanes treballant, i després les treu. Algunes vegades experimenta amb dues o més espècies successivament en el mateix recinte.

Les teranyines que es formen són més o menys tupides, s’enreden les unes amb les altres i el resultat són objectes tridimensionals subtils i delicats, naturals i atificials alhora. A vegades gira les teranyines un quart de volta o les posa al revés, i el resultat canvia completament. Té un projecte per fer aquestes teranyines en una càpsula espacial, en condicions de microgravetat. Les aranyes ni tindran la referència de dalt i baix, i les teranyines hauran de ser diferents, com són diferents les flames en absència de gravetat.

Les fotos que aquí s’ensenyen de Saraceno corresponen a la selecció d’obres que es presenten a la mostra Architectures of Life, del nou BAMPFA, el 20160220-4 aranyes   (3)University of California Berkeley Art Museum and Pacific Film Archive [+] i inaugurat en el seu nou edifici recentment (31-1-2016), proper al recinte de la universitat.

Usar éssers vius per a manifestacions artístiques és habitual, però normalment són plantes… [+]

20160220-4 aranyes   (4)

El hall del museu, amb un enorme mural xinès.

El hall del museu, amb un enorme mural xinès.


LA CUINA DEL FUTUR, SEGONS PERE CASTELLS

07/03/2016

Portada de l'edició en català

Portada de l’edició en català


La cuina del futur” de Pere Castells no és un llibre “de cuina”, en el sentit de que no és un llibre de receptes. És un llibre de reflexió sobre la cuina, en el sentit més ampli que es pugui pensar. Poso a continuació l’índex, només dels títols dels capítols, per veure l’abast de llibre:

1. Els productes: de la tradició a l'”exotisme”
2. Les textures en els aliments: beneficis i tendències.
3. Plaer, tradicions i nutrigenòmica
4. Dissenyant aliments per a tothom: menjar a tot arreu com si fossis a casa
5. El menjar del futur: la cuina i la química en equilibri
6. Canviant la forma de cocció: del foc a terra al microones
7. L’evolució de les eines culinàries: des del morter a la impressió en 3D
8. Del “xup-xup” a la 6 gamma: el paper de la indústria alimentària a la cuina
9. La cuina 2.0: gestionar la informació a la xarxa
10. Responsabilitat social i cuina
11. Cuina i ciència en benefici de la salut.

És el llibre amb més prefacis i introduccions que conec. Hi ha un llarg i interessant pròleg de Màrius Rubiralta, director del Campus de l’Alimentació de Torribera-UB; una brillant presentació de Josep Boatella, coordinador UB del grau de Ciències Culinàries i Gastronòmiques UB-UPC-CETT-Fundació Alícia; un prefaci en català i anglès, de Tom Hockaday, d’Isis Innovation (Oxford University); un epíleg de Ferran Adrià, i un altre de Joan Roca. Un llibre amb tantes credencials i suportat per tantes persones notables en el món de la nutrició, la cuina i l’alimentació no pot ser un llibre trivial. I no ho és.

L’autor principal és Pere Castells (1956), químic per la UB, que ha estat membre de l’equip científic d’elBulliTaller, coordinador de recerca de la Fundació Alícia, i actualment coordinador de la unitat UB-Bullipèdia i impulsor del grau de Ciències Culinàries i Gastronòmiques de la UB-UPC-CETT-Fundació Alícia. Ha escrit llibres tan fonamentals i útils com el Lèxic científic-gastronòmic, de 2006. A cada capítol del llibre hi participa un expert de cada camp, la simple enumeració dels quals ja demostra el nivell i amplitud de mires del llibre: Carme Ruscalleda (1), Albert Monferrer (2), Cristina Andrés-Lacueva (3), Martí Guixé (4), José Alfonso Canicio (5), Xavier Costa (6), Felip Fenollosa (7), Josep Mª Montfort (8), Jordi Torres (9), Àngela Jover (10), i Ramon Estruch (11).

La perspectiva del llibre és global. La cuina és l’element conductor, però s’hi parla de la globalització del mercat d’aliments, del colonialisme, dels moviments slow food i quilòmetre zero, de la influència del canvi climàtic en les collites o de la petjada de carboni. O de les textures, la forma de modificar-les i l’aplicació e l’alimentació d’hospitals o de gent gran. O de la nutrigenòmica com a eina de disseny de la dieta òptima. O del valor nutritiu dels insectes i altres invertebrats per a solucionar la disponibilitat de proteïna del futur prescindint de la ramaderia clàssica. O del producte alimentari sintètic, sense referent animal ni vegetal. O de les eines culinàries, incloent els microones, les impressores 3D d’aliments, la Thermomix o el Roner. O la tradició culinària oposada a la 6ª gamma de productes alimentaris.

La darrera part del llibre és probablement la menys habitual en llibres relacionats amb la cuina. L’anàlisi de la cuina com a element d’integració social a partir de projectes desenvolupats recentment ens porta a un plantejament globalitzat, el del paper de la cuina com a instrument contra la pobresa mundial, o de la cuina com a instrument de denúncia social. Finalment, el darrer capítol analitza el paper de la cuina i la ciència en el manteniment i millora de la salut de la població, tenint en compte aspectes com la sinèrgia dels diferents efectes en la cocció dels aliments i la seva relació amb la salut, la dieta mediterrània (estudi PREDIMED), i el paper de nous aliments i dels nutricèutics com a complement de dietes.

El llibre és imprescindible per a tota persona interessada en el fet alimentari, culinari i nutricional amb una perspectiva global. La seva lectura és fàcil per a públic no especialitzat, i no deixa indiferent.

El llibre ha estat publicat, en català i en castellà, per Tibidabo Ediciones, el febrer de 2016. La seva presentació pública a la Casa del Llibre de Rambla Catalunya el passat 5 de març de 2016 va representar un èxit d’assistència i de signatura de llibres.

5-3-2016. Presentació del llibre. D'esquerra a dreta Antni Comas (Tibidabo), Pere Castells, Màrius Rubiralta i Cristián Escribà (pastisser).

5-3-2016. Presentació del llibre. D’esquerra a dreta Antoni Comas (Tibidabo), Pere Castells, Màrius Rubiralta i Cristián Escribà (pastisser).