ES POT FER QUÍMICA A INFANTIL I PRIMÀRIA?

09/07/2017

Pàgina inicial de la web del Programa Exper(i)ència

Naturalment que no. Com no es pot fer física, ni biología, ni historia de l’art. La pregunta és típica de profesor de secundària o d’universitat, acostumat a treballar per disciplines científique

El cicle de l’aigua a una bossa de plàstic (fes clic a qualsevol foto per ampliar-la)

s. Però a nivells d’infantil i primària és una altra cosa. Els mestres preparen les activitats corresponents a les diferents facetes docents – plàstica, natura i medi, llengua, matemàtiques i càlcul, motricitat i altres- de forma integrada, i quan estan treballant un aspecte, en treballen també d’altres simultàniament. El que no hi ha és una separació dràstica entre disciplines, com després cursaran els alumnes a secundària.

L’objecte d’aquesta entrada no és plantejar acadèmicament de quina manera es poden formar les  competències i continguts  dels àmbits científics a aquestes edats. Aquí em proposo simplement explicar l’experiència de formar part del projecte Exper(i)ència, promogut per la Fundació Catalana per a la Ciència i la Innovació (FCRI). Aquest projecte pretén l’estímul a la generació de vocacions científiques en alumnes des d’infantil a batxillerat. La metodología consisteix a posar en contacte els alumnes -en el seu entorn escolar- amb científics sènior, emèrits o jubilats, d’universitats o d’empreses. Cada centre i cada sènior elaboren un programa d’activitats, que poden ser molt variades i dependrà dels interessos del centre, del nivel dels alumnes i dels coneixements, interessos i disponibilitat del sènior. Actualment el projecte és en el seu segon any, i hi ha 28 científics i 28 escoles o instituts vinculats. Entre les activitats que es desenvolupen hi ha – de més a menys edat- la col·laboració en el treball de recerca de batxillerat, la impartició de conferències especialitzades, visites a centres de recerca, desenvolupament de pràctiques per part dels alumnes, demostracions pràctiques, formació del professorat, i totes aquelles que s’acordin entre ambdues parts.

Pintant amb aigua

A mi se’m va vincular a una escola d’infantil i primària de Barcelona, l’escola Turó del Cargol, al barri de Gràcia, al costat del Park Güell. A aquesta escola hi ha diverses mestres motivades per les activitats científiques, i programa cada any un tema transversal de treball, que les diferents classes treballen al seu nivell.

Experiments de flotació

De comú acord, el paper del sènior a l’escola ha estat doble. Per una banda, la formació dels mestres en allò que necessitéssin relacionat amb la ciencia, tant de l’activitat quotidiana com de les activitats relacionades amb el tema transversal. I, per altra banda,  el suggeriment, planificació i realització d’activitats científiques amb els nens. El primer dels cursos, a més, es va fer una activitat addicional, que va consistir en que els nens van treballar el tema de “Com és i què fa un científic”. Van fer tota mena de dibuixos de científics més o menys bojos amb bata blanca, majoritàriament homes. I, després, classe per classe, el científic sènior –un servidor- es sotmetia a una batería de preguntes de l’estil “Què has inventat”, “Fas explosions?” “Has tingut mai cap accident”, “Per què vas decidir-te a ser científic?” i mil preguntes més de difícil resposta i que donen una clara idea de la visió que els nens grans tenen d’un científic. Els més petits no sabien què era un científic i a partir d’ara es pensaran que tots els científics són com jo….

Circuits d’aigua

Enguany el tema transversal d’escola ha estat “L’aigua”. Hem dedicat tres sessions d’ 1 hora a la formació básica, consistent en fer treballar als mestres una pregunta cada dia: “Què és l’aigua?” “On hi ha aigua?” i “Per a què serveix l’aigua?”. A partir de les respostes inicials dels mestres a aquestes preguntes tan simples s’estructurava la sessió, plena d’idees, preguntes i suggeriments. Hem dedicat tres sessions més al disseny i preparació d’activitats sobre l’aigua. Algunes activitats es desenvolupaven a cada aula, i altres eren per tota l’escola, pel Dia Mundial de l’Aigua que es va celebrar el 22 de març de 2017. A les fotos es poden veure algunes de les activitats fetes: pintar amb aigua de colors, experiments de flotació, circuits en que l’aigua baixa per gravetat, i l’observació del cicle de l’aigua en una bossa de plàstic posada al sol. Tots reunits al pati vaig fer l’experiment del sortidor de cocacola amb mentos, que no té massa relació amb el tema de l’aigua, però que funciona i és espectacular. Val a dir que es fa amb cocacola light i és en un 98% aigua.

Al laboratori de l’escola , i per a les classes de P3 i P4 , a més, vaig fer personalment alguns experiments addicionals: trasvasar aigua entre dues galledes amb un tub de goma, desplaçar una barqueta de paper d’alumini amb detergent, aguantar l’aigua d’un got invertit amb un paper.

Com es pot entendre de tota la descripció anterior, en la meva opinió cal fer l’aproximació a la ciència amb una estrategia ben simple, i per descomptat experimental: primer, manipulació dels objectes per part dels mateixos nens; segon, observació orientada del què passa en fer l’experiment; i, després, a la clase, descripció amb el seu llenguatge del que han manipulat i observat.  És tasca posterior de la mestra anar depurant el llenguatge i anar introduint terminología més precisa, com evaporació, vapor d’aigua, o, per als més grans, densitat, fluidesa o gravetat, lligades a altres observacions fetes anteriorment.

Experiment de la pell de l’aigua

També és el moment de la pregunta que espontàniament surt, i que obre una cadena infinita de preguntes: “Per què passa això que passa?“. La resposta als perquès passa ineludiblement per fer referència a la ciència coneguda i la inclusió de nous conceptes més abstractes. I, finalment i com a culminació, és el moment dels “Què passaria si…”  per obrir la perspectiva de futur, dels experiments mentals i l’especulació sobre possibles nous experiments. Aquestes són les quatre etapes de tot procés experimental: Què hi ha, que li passa, per què li passa i què passarà.

Pel camí, i intercalats en tot moment, els fonaments de la lògica i la deducció científica hi són omnipresents, al nivell adequat  a cada edat.  N’haviem vist algun exemple a una entrada anterior [+]  Totes aquestes activitats no són encara química ni física, però en són els fonaments. I això ho ha de poder fer un mestre no especialista en ciències, com fa llengua o motricitat. I ho fan ben fet, si estan motivats i ben orientats.

Preparant el got d’aigua que no es buida perquè hi ha un paper

Trasvassament d’aigua amb un sifó

Anuncis

ÚS DEL LEGO EN L’ENSENYAMENT DE LA QUÍMICA A SECUNDÀRIA

07/07/2017

Aquesta entrada va especialment per a professors de química de secundària. És el resum de la meitat d’una conferència invitada que vaig presentar a la recent reunió biennal de la Real Sociedad Española de Química (Sitges, 25 a 28 de juny de 2017). És, al seu torn, un resum de l’article publicat a la revista Educació en Química, que pot descarregar-se des d’aquí [+]

No hi ha dubte de l’eficàcia de l’ús d’analogies quan són usades correctament. L’analogia entre l’estructura de la matèria i les construccions del LEGO està força estesa, i el propòsit d’aquesta entrada és fer-ne una crítica tot assenyalant-ne els diversos problemes que genera si s’aplica malament.

Quan, el 1963, es va crear el sistema LEGO les peces eren de formes simples: paral·lelepípedes de diferents gruixos, amplades, alçades i colors, cilindres, plaques i poca cosa més. Amb els anys han augmentat moltíssim el nombre i varietat de peces disponibles, com finestres, rodes, eixos o figures humanes completes des de 1974. Moltes de les peces actuals són dissenyades ad hoc per construir una determinada estructura, en una filosofia molt llunyana de la original, però molt més propera al consumidor actual, menys preocupat pel procés de construcció que pel resultat final. Aquesta ha estat també l’evolució d’altres joguines de construcció com Meccano. En l’analogia que es comenta aquí s’usen només les peces de LEGO genèriques del sistema original.

És trivial usar LEGO per a la maquetació en tota mena de camps, també en la química, com taules periòdiques [+]  o molècules d’ADN. tot i que són molt millors els models moleculars de barres i esferes, o d’espai ple [+] . Aquí no parlem d’això. L’analogia que aquí ens interessa és entre les peces de LEGO i les entitats químiques elementals, àtoms o molècules. Per exemple, Izquierdo et al.  [2011, “Química a infantil i primària. Una nova mirada” Ed. Graó, Barcelona. p. 73-84]  fan ús de les peces de LEGO per visualitzar les reaccions que tenen lloc en la respiració cel·lular. Anderton  [+]  fa una proposta similar d’igualació de reaccions a partir de manipulació de peces de LEGO. L’edat que aquestes propostes recomanen per fer aquests tallers és al voltant dels 11 a 12 anys.

Figura 1. A i B Formes possibles de la molècula d’aigua, si no esté informació de l’estructura. Les altres formes possibles són topològicament equivalents. C Hipotètica molècula d’H16O, possible segons LEGO però sense existència real.

Els tres punts bàsics de l’analogia LEGO-estructures moleculars són evidents:

  • cada peça individual de LEGO és anàloga a un àtom. Efectivament, cada peça no es pot fer més petita, és indivisible.
  • àtoms diferents venen representats per peces de LEGO diferents. De fet, hi ha moltes més peces de LEGO diferents que tipus d’àtoms, que avui són 118.
  • l’unió de dues peces equival a un enllaç entre dos àtoms. Majoritàriament són enllaços covalents.

Les propostes citades usen el joc bàsicament per explicar un aspecte força abstracte de la reacció química, com és l’estequiometria, és a dir el nombre d’àtoms i molècules que participen d’una reacció. En essència el procediment és ben simple:

  • s’escriu la reacció a modelitzar en la seva versió molecular
  • es construeixen amb LEGO aquestes molècules
  • després, en la reacció les molècules inicials de reactants desapareixen, i els àtoms que les constituïen es reordenen donant noves molècules, els productes, mantenint-se invariable globalment el nombre i tipus d’àtoms del sistema en reacció.

Aquesta és l’analogia. Cal ser conscient de que té un grau d’abstracció considerable. La reacció química escrita en paper és ja una abstracció important de la reacció química vista al laboratori, perquè s’ha passat de veure substàncies reals a fórmules de substàncies. I, a més, ara aquestes fórmules es fan anàlogues a construccions de LEGO, però només pel que fa al nombre i tipus de peces involucrades, i no per la seva forma.  El procés mecànic de combinar peces i imaginar noves molècules no presenta dificultats per als alumnes, especialment si no hi ha limitacions a l’hora de fer propostes de molècules de productes a partir de molècules de reactants. Però, i aquí ve la pega principal, en tot el procés d’analogia és probable que s’hi indueixin espontàniament, per acció o per omissió, diferents errors conceptuals. Cal, per tant, evitar o paliar la consolidació d’aquests errors en les ments dels alumnes, identificant-los per tal d’explicitar-los i procurar que els alumnes en siguin conscients.

Se’n indiquen a continuació els més rellevants.

Concepte erroni 1. Imaginar que les molècules es creen unint directament els àtoms dels seus elements constituents. En realitat els esquemes de reacció per obtenir els diferents productes gairebé mai passen per la síntesi directa a partir dels àtoms constituents: l’àcid sulfúric H2SO4  no s’obté a partir de S, O i H,

Concepte erroni 2. Imaginar que les formes de les peces determinen les possibilitats de fer molècules. Però malauradament les “molècules” modelitzades no tenen per què tenir res a veure ni en forma ni en mida relativa -ni, per descomptat, en colors- amb les molècules reals. Només en alguns casos les “molècules” de LEGO i les reals s’assemblen una mica, com en la molècula de l’aigua feta amb una peça de 4×2 i dues de 1×2 (figura 1). Les formes i mides dels àtoms reals no poden ser representades en absolut amb peces de LEGO, i això és una important limitació operativa.

Concepte erroni 3. Imaginar que, així com en el LEGO es poden unir totes les peces entre elles, tots els àtoms es poden unir entre ells donant molècules. Però, en química, no totes les molècules són possibles.

Concepte erroni 4. Imaginar que, de la mateixa manera que les peces de LEGO es poden unir de formes diverses, els àtoms de les molècules també. Així, la molècula H2O es pot fer amb LEGO unint cada H a l’O, o unint un H a l’O i unint-lo també a l’altre H (H–O–H o H–H–O), però només la primera estructura és correcta.

Concepte erroni 5. Imaginar que, així com en el LEGO una peça pot unir-se amb altres mentres li quedin protuberàncies i buits, l’àtom que la peça representa també pot anar-se unint amb altres àtoms. sense limitació. Però això no és cert.  En l’exemple de la molècula d’aigua, la peça vermella de 2×4 representant l’oxigen podria unir-se, en el límit, amb 16 peces d’1×2 blanques que representen hidrògens, vuit per dalt i vuit per baix. Però l’H16O no existeix (figura 1).

Concepte erroni 6. Imaginar que, de  la mateixa manera que les peces en l’estructura mantenen la seva individualitat, els àtoms en les molècules també la mantenen. Però, de fet, a les molècules -o als metalls, o a les sals, o a les estructures gegants covalents, o a les macromolècules- no hi trobem àtoms com a tals.

Concepte erroni 7. Imaginar que que les reaccions químiques tenen lloc descomponent les molècules dels reactants en els seus àtoms constituents, que després es tornen a reagrupar en altres molècules de productes. Però els mecanismes de reacció són molt més complexos.

Concepte erroni 8. Imaginar que les reaccions tenen lloc completament, és a dir que desapareixen els reactants i es transformen completament en productes. Aquest error és molt comú perquè no es sol distingir prou clarament entre la reacció química a escala de molècules, representada per l’equació química, i la reacció química a escala macroscòpica, on hi poden haver condicions d’equilibri i conversions menors del 100%.

Concepte erroni 9.  Imaginar que les reaccions modelitzables amb LEGO són les úniques existents. Però n’hi ha moltíssimes més, com les reaccions amb metalls, o en dissolució, que  no són prou ben representades amb les peces de LEGO.

Concepte erroni 10. Imaginar que les reaccions tenen lloc d’una forma ràpida, i relacionada amb la rapidesa amb que es poden construir o destruir les estructures de LEGO. La cinètica i el mecanisme de les reaccions no poden ser imaginats veient només l’estequiometria.

Concepte erroni 11. Imaginar que en les reaccions hi ha poca energia involucrada. De fet, el mecanisme real d’unió de dues peces de LEGO entre elles és l’elasticitat del material de que estan fetes, i el fregament, forces molt més febles que les dels enllaços químics.

Concepte erroni 12.  Imaginar que, així com en LEGO es passa directament de les peces individuals als objectes, en la química també es pot passar dels àtoms als objectes per simple creixement de l’estructura. En la realitat hi ha altres estructures intermèdies involucrades, diferents de les molècules, i unides entre elles per enllaços diferents dels covalents.. Això no és possible de visualitzar-ho amb LEGO.

Qualsevol eina didàctica porta implícites determinades limitacions. En el LEGO hi ha una limitació estructural: el joc indueix a visualitzar i imaginar estructures químiques que són molt allunyades de la forma de les estructures reals de la matèria. La segona limitació té a veure amb la reacció química: en cap moment la modelització permet treure cap conclusió sobre aspectes termodinàmics -equilibri, conversió-, o sobre aspectes cinètics -velocitat de reacció- i només permet visualitzar l’estequiometria de les reaccions.

Cal, doncs, que el professor sigui molt conscient de les limitacions de l’analogia LEGO – química, i n’eviti els paranys. Com cal fer en qualsevol altra analogia o metodologia didàctica.

Figura 2.  Reacció de combustió completa del metà visualitzada amb peces de LEGO. A (metà CH4) i B (dues molècules d’oxigen O2) reaccionen donant C (diòxid de carboni CO2) i D (dues molècules d’aigua H2O)