ART CIENTÍFIC -14 TEORIA DE CORDES, REALITAT DE CORDILLS, DE JO MILNE

04/10/2016

Catàleg de l'exposició

Catàleg de l’exposició

Jo Milne [+] és una artista anglesa que treballa a Catalunya, apassionada de la ciència. La seva actual exposició “No faig prediccions sinó excuses” és a l’Espai Volart de la Fundació Vila Casas de Barcelona, fins el 18 de desembre de 2016. De l’exposició n’ hi ha un catàleg amb reproduccions fotogràfiques de totes les obres, i una introducció d’Octavi Rofes, professor del grau de Disseny de l’escola Eina. El títol de l’exposició és una variant del que va dir el físic Richard Feynman (1918-1988), “La teoria de cordes no planteja prediccions sinó excuses“. Era una mica escèptic, en aquell moment, sobre les especulacions que feia la teoria de cordes i de supercordes.

Em costa molt d’entendre la literatura que es fa sobre el fet artístic en general quan deixa de ser descriptiva d’allò que es veu i entra en allò que expressa -o que creu que expressa- l’obra. Un exemple del que no entenc és la frase de Paul Kockelman (2010) sobre l’exposició de Jo Milne, que és al catàleg: “… dos tipus de traducció (o mediació) que es podrien caracteritzar vagament com a traducció material (o canalitzar entre senyalitzadors i interpretants, com circulació) i traducció signficativa (o codificar entre signes i objectes, com interpretació). Així, tal com els codis relacionen signes als objectes (o missatges a referents), els canals relacionen senyalitzadors a interpretants (o emissors a receptors)“.

No ho entenc gaire. Cada paraula és més o menys comprensible, però el conjunt se’m escapa. Em passa el mateix que en la divulgació de determinats conceptes de cosmologia o de mecànica quàntica. Per exemple, Stephen Hawking escriu, a “L’univers en una closca de nou” (2001), que “En els universos membrana, els planetes podrien girar al voltant d’una massa fosca situada en una membrana “ombra” perquè la força gravitacional es propaga en les dimensions addicionals”.

Tampoc ho entenc. Cada paraula és comprensible, però no sé què m’ha dit. Probablement ara ja hagi canviat tot el concepte del text, perquè és de fa quinze anys. No és que retregui a Kockelman o a Hawking el que escriuen, perquè si no ho entenc és degut a la meva ignorància. El que sí que em sembla és que aquesta literatura no és divulgativa.

Imagineu, doncs, la dificultat de comprendre i assumir l’obra de Jo Milne, que uneix el món artístic descrit per Kockelman amb el món de Hawking. Milne intenta fer tangibles i visibles alguns aspectes de la nanotecnologia, o objectes i teories més abstractes, com la teoria de cordes i supercordes, els forats de cuc, els quarks o el big bang.

Ni de l’exposició ni del catàleg em queda clar el procediment de treball de Jo Milne. Fa figures en volum mitjançant impressió 3D o mitjançant cabdells de cordill de niló, i fa representacions en 2D, algunes de les quals semblen projeccions sobre el pla de les figures 3D, i altres de creades directament en 2D. Ha treballat al Citilab [+] , laboratori ciutadà (quoi que ce soit) on desenvolupen projectes elacionats amb arts urbanes i xarxes socials.

Osmocosmo, 2014. Fes clic per ampliar

Osmocosmo, 2014. Fes clic per ampliar


Cap de les representacions de Milne no semblen derivar-se de representacions geomètriques d’equacions matemàtiques de les teories representades, o al menys això no s’explicita enlloc. Els esquemes i representacions no són explicatius ni pretenen ser-ho, a diferència dels dibuixos dels llibres o articles de divulgació, que tampoc solc entendre completament però al menys hi ha un peu de figura explicatiu. Els de Milne són, al meu entendre, només evocatius. Em recorden alguns quadres de l’expressionisme abstracte de Jackson Pollock, volgudament sense significat tangible.

Diversos artistes o pensadors sense una formació específica en ciència estan o han estat fascinats per la ciència. Milne n’és un exemple actual, però pensem en el polític Shimon Peres, mort el setembre de 2016, de qui els seus biògrafs diuen que sentia passió per la nanotecnologia malgrat no haver estudiat res de ciència, només alguns cursos d’agricultura. O Salvador Dalí, que comentarem després.

Figures 3D  "The Model is not Manifold", 2015

Figures 3D “The Model is not Manifold”, 2015


No és que les persones fascinades per la ciència l’entenguin. Se’m va encarregar en una ocasió que escrivís un text científic explicatiu per a una revista d’una institució. Em devia sortir massa complicat, perquè la persona que m’ho va encarregar em va dir. “No l’he acabat d’entendre. El llegiré una altra vegada a veure si te’n comprenc l’argument“. Em va costar una mica fer-li entendre que el text científic no té “argument” en el sentit de que no es tracta d’un sil•logisme o d’una proposició lògica, sinó que és una descripció feta amb terminologia experta, que no tothom té, i que qui m’ho criticava no tenia. Un dels problemes de la no-comprensió era el llenguatge que jo havia usat, format per termes dels que l’interlocutor no en comprenia el valor real. Com ens passa -al menys em passa a mi- amb els textos de Kockleman o de Hawking. O molts textos dels suplements culturals dels diaris.
Il·lustració delllibre "L'univers en una closca de nou". Pretén visualitzar dimensions ocultes d'un objecte, fent l'analogia amb estructures tan petites que a ull nu no es veuen. Però en la figura tot són les mateixes 3 dimensions, no dimensions addicionals, impossibles de representar. Fes clic per ampliar.

Il·lustració del llibre “L’univers en una closca de nou”. Pretén visualitzar dimensions ocultes d’un objecte, fent l’analogia amb estructures tan petites que a ull nu no es veuen. Però en la figura tot són les mateixes 3 dimensions, no dimensions addicionals, impossibles de representar. Fes clic per ampliar.


La fascinació per la ciència per part d’un no científic pot venir dels temes que tracta, apassionants en ells mateixos: l’origen de la vida, cap on va l’univers, la reproducció, l’evolució, la psicologia, l’atzar… O potser la fascinació la dóna la metodologia científica, l’aparent exactitut i racionalitat, aparentment tan allunyada de les subjectivitats filosòfica, literària o artística. O de l’admiració cap a un científic determinat, potser per motius que no tenen res a veure amb la ciència que fa: la fascinació per Stephen Hawking -sempre ell- té tan a veure amb el que investiga, com amb la forma com ho divulga, com amb el seu estat físic i la lluita contra la malaltia, que l’ha transformat amb un mite.Les postures polítiques d’Einstein i la seva figura deuen haver estat determinants en la seva projecció pública.

Dalí, que no va ser un científic, era un apassionat de la ciència fins al punt de titular els seus quadres amb noms científics; va fer servir en les seves xerrades o entrevistes termes com desoxirribonucleic -que en la seva peculiar forma de parlar semblava una paraula inventada però el discurs en la que la inseria tenia sentit- i va fer molts quadres amb il•lusions òptiques que requerien un coneixement profund de les teories de la visió i de la percepció. Va experimentar amb l’estereoscòpia, amb hologrames, amb projeccions 3D d’espais 4D.., Va muntar amb Jorge Wagensberg el 1985 el simposi científic “Cultura i ciència: determinisme i llibertat“, amb sis ponències i col•loquis al Teatre-Museu Dalí on hi van anar figures tan importants com René Thom, introductor de la teoria de les catàstrofes, el renovador de la termodinàmica Ilya Prigogine, o Benoit Mandelbrot, creador del concepte de fractals. Entenia res Dalí? En sentit profond, no, però el fascinaven tots aquells conceptes, i en sabia veure on podien arribar a portar.

No sé on he llegit que “en un moment on en el món científic el més important era l’especialització, Dalí ja defensava una postura que avui és un tema de debat molt important: la unitat“. Es tracta de superar les dues cultures, com Ferran Adrià i tants altres creadors han intentat: no fer incompatibles la reflexió i l’emoció. Per al meu gust, per ordre: primer emocionar-se i després reflexionar el per què de l’emoció

Manifestly Manifolded. Cordill de niló, 2015-16

Manifestly Manifolded. Cordill de niló, 2015-16

Anuncis

LA FAL·LÀCIA DEL CAMPANER

04/09/2016

Primer exemple. Els espinacs i el ferro.

Tots sabem que els espinacs no tenen tant ferro com se’ls atribueix, i que l’origen de l’error va ser una persona que es va equivocar: va transcriure el valor real de ferro en els espinacs, que és de 0,003 g/100 g pel valor 0,03 g/100 g, és a dir deu vegades més. La fama del ferro als espinacs havia començat, i des de 1929 Popeye el mariner devorava espinacs per agafar la fortalesa del ferro. Tot això ho sabem, perquè ho hem llegit a llibres de divulgació, per exemple el meu “La truita cremada” (Mans 2005).

Però tot això que sabem, resulta que és fals. Llegeixo el llibre “Monos, mitos y moléculas” de l’eminent divulgador Joe Schwarcz ) (2015) i al seu capítol “La locura de Popeye” reconeix que ell també havia escrit un capítol de divulgació amb el mateix error. Ell ho atribueix a la seva font, el prof. A.E. Bender, en un article de 1977. Segons Bender, von Wolff el 1870 havia analitzat el ferro als espinacs. Quan el 1937 ho va repetir Schupan i va veure que en tenia molt menys que el que von Wolff havia dit. I Bender va imaginar: “la fama dels espinacs sembla venir d’una coma decimal mal posada“… sense cap evidència de que això fos així!. Hamblin el 1981 ja ho donava per cert en una introducció a un curt article sobre falàcies científiques. Més encara, el creador de Popeye E.Segar mai va atribuir al ferro dels espinacs la força del mariner: ho atribuia, el 1932, a la vitamina A, no al ferro. Però els espinacs tampoc contenen vitamina A, sinó betacarotè, un precursor de la vitamina A, que realment ajuda a mobilitzar el ferro que ja hi hagi a l’organisme. En el meu cas, la meva font de l’error va ser el capítol “Espinacas“, de F.Féron del llibre de Bouvet (1999), que cita com a font l’article de Hamblin, i on afirma -dient que així ho diu la llegenda- que va ser la secretària qui va equivocar-se en passar el manuscrit a màquina.

Popeye i la vitamina A. Fes clic per ampliar

Popeye i la vitamina A. Fes clic per ampliar


El criminòleg Mike Sutton va publicar el 2010 un monumental article en format de conferència (Sutton, 2010) on desmuntava totes aquestes afirmacions. Va dedicar-se a resseguir les fonts originals fins on li va ser possible: els criminòlegs ja ho tenen, això de la minuciositat, al menys els de les sèries de televisió. Sembla que von Wolff es va poder equivocar en fer l’anàlisi inicial, perquè potser es va contaminar la mostra amb ferro del recipient, i no va concretar si la mostra d’espinacs era normal o ja dessecada , cosa que introduiria un esbiaixament crucial. Però no hi ha cap evidència de la llegenda de que algú es va equivocar en transcriure les dades de laboratori a paper. Juan Revenga al seu excel·lent blog sobre nutrició ho ha explicat prou bé [+].

I, per rematar-ho, un plat d’espinacs (180 g) té 6,43 mg de ferro, i en canvi una hamburguesa de 170 g en té 4,42 mg! Però és veritat que el ferro dels espinacs és menys assimilable, encara que això és un altre tema.

Per què uns divulgadors accepten -acceptem- acríticament el que altres han escrit abans? Ho mirarem de respondre al final.

Segon exemple. El rebuig de la universitat de Berna a Einstein

Per la xarxa circula una carta que va escriure el degà de la Facultat de Ciències de Berna, Dr. Wilhelm Heinrich, rebutjant la sol•licitud d’Albert Einstein per ser-ne professor associat. L’argument pel rebuig era que les conclusions d’Einstein sobre la naturalesa de la llum i les relacions espai-temps eren massa radicals, i que eren conclusions “more artistic than actual Physics“. Aquesta carta s’ha fet circular per demostrar que els responsables acadèmics es poden equivocar i de fet s’equivoquen, i que cal promocionar els investigadors joves, encara que defensin idees agosarades. La carta està datada el 1907.

Quan vaig veure la carta, em va fer mala espina, per diversos motius: està escrita en anglès, i m’estranya que un degà de Berna -Suïssa de parla alemanya- es dirigeixi a un estudiant alemany nacionalitzat suís en anglès. A més, el logotip i el timbre de la universitat estan també en anglès. Anecdòticament, a la part superior dreta sembla endevinar-se un segell de correus dels EUA, amb la imatge del mateix Einstein!

Una elemental cerca per Internet permet constatar que es tracta d’una falàcia. Zimmermann (2015) ho explica bé: l’arxiver de la universitat de Berna Niklaus Bütikofer afirma que és una evident i burda falsificació, per tres o quatre detalls: la facultat en aquell moment era de Filosofia, Història i Ciències Naturals; mai hi ha hagut un degà que es digués Wilhelm Heinrich; la llengua de correspondència havia de ser necessàriament l’alemany; el timbre és una modificació d’un escut d’armes hongarès; i el carrer on diu que eés la universitat (Sidlerstrasse)no va dir-se així fins 1931, i el 1907 no hi havia codis postals. Sí que era cert que Einstein va sol•licitar ser associat de la universitat i no li van concedir perquè no complia el requisit de tenir una tesi homologada, però al cap d’un any li va donar la venia docendi.

La suposada carta del degà a Einstein. Fes clic per ampliar

La suposada carta del degà a Einstein. Fes clic per ampliar


Qui va fer aquesta falsificació? Se suposa que és la broma d’un estudiant de física avorrit que volia fer-se un lloc a les xarxes socials…

Però la pregunta és com és que no es veu inmediatament que es tracta d’una falsificació i es reenvia acríticament?

Tercer exemple. Els raigs N

El 1903, investigant sobre raigs X, el físic de la facultat de Ciències de Nancy, prof. René Blondlot, va observar uns raigs diferents, polaritzables, als que va denominar raigs N. Se’n van determinar moltes de les seves propietats, especialment la de promoure la fosforescència de certs compostos, o d’incrementar la llum reflectida en una superfície. Molts investigadors van dedicar-se a estudiar aquests raigs, es registren fotogràficament, se’n observa l’emissió per part de barres imanades, per gasos licuats, per metalls, en determinades reaccions químiques. Altres investigadors reconeguts descobreixen irradiacions fisiològiques de propietats similars, i arriben a resseguir els nervis del cos humà seguint l’emissió d’aquestes irradiacions. Augmenten l’agudesa visual, les vèrtebres en generen… Tot un cos científic nou s’havia creat en un any.

Però el 1904 tot es va desmuntar. Investigadors d’altres equips van ser incapaços de reproduir els resultats, i el 1905 ja ningú parlava del tema. I no eren desconeguts els que van protagonitzar aquest episodi. Eren professors d’universitat o metges d’hospital.

Aquest exemple el vaig llegir de Rostand (1971). Descartada la voluntat d’engany, que sembla clar que no va existir, al menys majoritàriament, la pregunta és com es pot arribar a muntar tot un camp de recerca sense cap base experimental evident?

La fal·làcia del campaner

Llegim Lewis Carroll a “The Hunting of Snark“. Al començament un dels personatges, el Campaner, fa un discurs èpic a la tripulació que va a capturar l’Snark (un monstre indeterminat, el Merma en la traducció de Viana). A la segona estrofa diu:

Just the place for a Snark! I have said it twice:
That alone should encourage the crew.
Just the place for a Snark! I have said it thrice:
What I tell you three times is true.

(La traducció d’Amadeu Viana de 1999 de Biblioteca de la Suda és:

Bon lloc per a un Merma! Dic per segon cop:
vull bons tripulants d’esperit exaltat.
Bon lloc per a un Merma! Dic per tercer cop:
ho he dit ja tres voltes, tres és veritat.
“)

Aquesta és la Fal·làcia del Campaner, que Skrabanek i McCormick van descriure el 1992: la repetició d’una afirmació li dóna versemblança al marge de la seva veracitat.

Portada de "The Hunting of  the Snark" en edició de Martin Gardner (2006). El Campaner és a la part superior. Fes clic per ampliar

Portada de “The Hunting of the Snark” en edició de Martin Gardner (2006). El Campaner és a la part superior.
Fes clic per ampliar


I això és el que ens passa a tots. No comprovem les fonts, malgrat que siguem científics. Però en el camp de la divulgació no actuem com a tals en molts casos. No anem mai a les fonts originals per mandra, però sobre tot per col•leguisme. Implícitament pensem que una persona que fa una feina tan important com la divulgació -que un mateix, com a divulgador, creu que és important, naturalment- sempre diu veritats, deu haver comprovat el que afirma, o té fonts fiables. I massa cops el col•lega ha fet com un mateix: basar-se en un llibre d’un divulgador anterior del qual ens fiem. N’agafem algun exemple vistós, el reescrivim al nostre estil, potser hi afegim alguna aportació addicional no comprovada que faci l’exemple més divertit o més cridaner, però no necessàriament més cert… I la repetició per part d’altres pot incrementar-ne la credibilitat, però no en millora la veracitat: no sé si l’anècdota de la poma que li va caure a Newton va tenir lloc o no, però el fet que tothom ho digui no la fa més certa. El darrer que he llegit és que el seu primer biògraf i amic, present al llarg de les reflexions del savi, no transcriu cap caiguda de poma -i menys al cap- , però sí que Newton parlava de la gravetat posant com a exemple la hipotètica caiguda d’una poma de la pomera sota la que seien, i que segueixen ensenyant a la residència del savi.

Per altra banda, la Viquipèdia en qualsevol de les seves versions -moltes entrades de la qual són simples traduccions de l’anglès- , i que és la primera font de dades complementàries, no és una font prou fiable, i està escrita en massa ocasions per no experts. Pel que fa a dades físiques i químiques, no sol haver-hi cap problema, però per altres dades que requereixen alguna interpretació, pot ser errònia, i no tenim manera de saber-ho perquè no sabem qui ho ha escrit i en molts casos no hi ha referències. I en temes de nutrició, contaminació, perillositat de productes, malalties, pseudociències i camps similars, s’hi veu massa sovint la lluita entre defensors d’una postura i de la contrària. Són temes de difícil moderació.

Tot això posa un cert grau d’incertesa a la fiabilitat dels nostres articles, llibres, blogs i conferències. Seran tan fiables com les nostres fonts, si es tracta de temes que ens són aliens o en els que no hem investigat. O tan fiables com la nostra expertesa i autoritat personal , si estem tractant d’un tema propi de la nostra especialitat. I, evidentment, sempre depenent de l’estat del coneixement global del tema, que pot anar canviant amb el temps, i més en alguns camps científics com els citats en el paràgraf anterior.

El cas dels raigs N té unes connotacions diferents, perquè no es tracta d’errors en la divulgacio, sinó en la creació de ciència. En aquest cas hi havia factors com la voluntat del primer investigador de crear-se una fama com la de Becquerel o Curie descobrint algun tipus de radiació, el seguiment acrític dels seus deixebles, l’enveja dels seus col•legues, el xovinisme i l’estímul de les autoritats franceses per aconseguir superar la ciència anglesa, la no comprovació de resultats amb l’esbiaixament d’eliminar els experiments que no anaven bé a allò que es volia corroborar, … I és que els investigadors científics són també persones humanes, amb les febleses pròpies de l’espècie. La història va plena de situacions similars, moltes vegades amb components polítiques. Recordem Lysenko o el mitxurinisme durant l’època de Stalin a l’URSS. El fals descobriment d’elements químics al llarg dels segles XIX i XX segueix les mateixes pautes (Mans 2010)

Annex per a professors

Un camp on aquests problemes són ben evidents són els llibres de text. En massa ocasions es copien els uns als altres, i a més, potser qui fa les programacions és o ha estat autor de llibres de text. He actuat de corrector extern d’alguns llibres de batxillerat de física i química, i puc afirmar que amb el temps s’han corregit alguns errors mil vegades constatats en edicions anteriors (per exemple la “demostració”l que feia derivar la llei d’acció de masses de la cinètica de les dues reaccions directa i inversa, “demostració” que era només vàlida per a l’exemple concret que s’exposava) però altres errors no hi ha manera que es corregeixin. Destaco especialment el de la descripció del perfil de reacció, on en la figura sempre s’hi introdueix en abcisses un hipotètic avenç de la reacció, un temps de reacció, una coordenada de reacció (concepte genuï però no aplicable més que al món atòmicomolecular). Aquest error no és exclusiu dels textos d’aquí, sinó que en manuals de tota solvència s’hi troba també. He tingut ocasió d’explicar-ho en detall (Mans 2012) però ni cas.

Esquema erroni d'un perfil de reacció. Fes clic per ampliar.

Esquema erroni d’un perfil de reacció. Fes clic per ampliar.


Bibliografia

Bouvet, J-F (coord) (1999) “Hierro en las espinacas… y otras creencias” Taurus- Santillana, Madrid. Trad. de l’original d’Éditions du Seuil (París 1997)

Hamblin, T.J. (1981) “Fake!“, British Medical Journal nº283, pp.1671-1674. [+]
Mans, C. (2005) “La truita cremada“. Ed. del Col•legi de Químics de Catalunya, Barcelona. Trad. al castellà “Tortilla quemada” (2005)

Mans C. (2010) “Els falsos elements” Revista de la Societat Catalana de Química 9/2010, 66-81. [+]

Mans, C. (2012) “Coordenada de reacció?” Educació Química nº 11, p.12-16 [+]

Rostand, J. (1971) “Ciencia falsa y falsas ciencias“, Biblioteca General Salvat, Barcelona. Trad. de l’original d’Ed. Gallimard (París 1958).

Schwarcz, J (2015) “Monos, mitos y moléculas” Pasado&Presente, Barcelona.

Sutton, M. (2010) “Spinach, iron and Popeye: Ironic lessons from biochemistry and history on the importance of healthy eating, healthy scepticism and adequate citation” [+]

Zimmermann, M. (2015) “The Einstein forgery[+]


CRISPETES

02/09/2016

Stephen Hawking va escriure un llibre que es deia “L’univers en una closca de nou“. Això de la closca de nou és una traducció de nutshell, paraula que en anglès fan servir com a sinònim d'”en poques paraules“. i nosaltres també podriem dir que “Tota la química en una crispeta“. Però hi ha una diferència entre ambdós títols: el primer és fals, i el segon, no tant.

En castellà apareix el terme palomita com a americanisme des de 1925. I més endavant el fan sinònim de roseta, terme que ja hi sortia des de 1901. No sé de quan és el concepte de crispeta en català però deu ser un terme més tardà. En anglès crisp vol dir, entre moltes altres coses, fràgil i fàcil de trencar, i realment una crispeta n’és, però en anglès n’hi diuen popcorn. Al diccionari de Pompeu Fabra no hi figura, però sí al de l’IEC, com a sinònim de rosa derivada dels grans de blat de moro. Al magnífic Corpus de la Cuina Catalana de 2006 hi figuren les crispetes, però remeten a crespells de flor de carbassera, i són flors arrebossades, que es diuen també crispells.

Busco a la Viquipèdia i allà quedo abrumat… En copio només el començament: “(Les crispetes son) també conegudes com a rosetes, roses, bombes, borles, clotxes, coixos, galls, gallets, monges, moresc, agüelos, bufes, esclafites, esclafitons, cotufes/cotufles i catufes, flors, floretes, panissos, petats, petorres, xofes/xufes, senyores o confits de dacsa o de panís” Gairebé tants com el nom del blat de moro, que es diu també panís, moresc, dacsa, i altres.

Bossa de paper per fer crispetes en el forn de microones

Bossa de paper per fer crispetes en el forn de microones

He provat de fer crispetes de diferents llavors seques, sabent que no em sortirien bé: cigrons, llenties, mongetes blanques, mongetes vermelles, faves seques, pèsols secs, i blat de moro. Per, pel que he llegit, també es poden fer crispetes d’amarant i de quinoa, que són dos pseudocereals molt apreciats ara entre la gent que busca coses naturals, superaliments i coses indígenes que aquí no hi siguin. L’amarant és una planta amb moltíssmes varietats, que a Catalunya és coneguda i es considera una mala herba. Algunes varietats són cultivades a l’Amèrica Llatina i se’n mengen les fulles, i ara és apreciada especialment per les llavors. Són uns granets molt petits, especialment demanats perquè té molt manganès, ferro i fósfor. Un pseudocereal és una planta de la que se’n mengen les llavors, però que no és una gramínia -que són herbes i fan espigues- i no té gluten. El fajol o blat negre -el trigo sarraceno– és un exemple de pseudocereal nostrat. La quinoa és també un pseudocereal, emparentada amb els espinacs o les remolatxes. Se’n aprofiten les llavors. Té origen als Andes, com la patata o el blat de moro, i ara es cultiva per tot arreu on hi hagi clima sec i terrenys amb una certa alçària. És un producte car. La llavor té una closca amb molta saponina, compost tòxic i amargant. Se li treu la closca en origen per fer-la comestible i aquestes llavors no permeten fer-ne crispetes.

En la creació de crispetes hi ha tres fenòmens diferents: per un costat hi ha el fet d’escalfar la llavor. Per altra banda hi ha la resistència de la membrana, i finalment hi ha el comportament de la massa calenta de l’interior en posar-se en contacte amb l’atmosfera. Comencem per l’interior del gra. Tots els grans i llavors tenen més o menys la mateixa estructura: solen tenir forma ovalada o esfèrica. En un extrem hi tenen el germen, amb proteïnes vegetals. La resta del gra, que pot ser-ne el 80% o més, és l’endosperma, on hi ha els hidrats de carboni -el midó-, que són l’aliment de l’embrió. La pell o pericarp té una funció protectora, i es presenta en tota una varietat de resistències, permeabilitats i dureses, segons el gra del que es tracti. L’endosperma conté una certa proporció d’humitat. Un gra de blat de moro sol tenir d’un 61 a un 67% de midó, 13 a 16% d’aigua, 8 a 10% de proteïnes, i 3,3 a 4,5% de greixos. Una castanya, que s’escapa del concepte de gra, arriba a tenir fins un 50% d’humitat. En canvi el festuc només un 3%.

A 66ºC aproximadament s’hidrolitza el midó. El midó no és una sola substància química, sinó diverses, especialment amilosa i amilopectina. Són polisacàrids de cadena llarga o molt llarga, sense ramificar o amb ramificacions respectivament, que estan enroscades entre elles. No són solubles en aigua perquè són molècules molt grans, però tenen molècules d’aigua adsorbides -enganxades superficialment- al llarg de la cadena. A temperatures una mica altes les cadenes es separen i l’aigua en facilita l’estovament global. D’aquesta operació se’n sol dir gelatinització, tot i que no té res a veure amb la gelatina, que no n’hi ha. El grànul farinós agafa una consistència de gel, però no es nota des de fora perquè un gra de blat de moro està cobert pel pericarpi, que és la membrana exterior, i és molt dens en fibres de cel•lulosa, cosa que el fa resistent i impermeable a la humitat i al vapor d’aigua. Un gra de blat de moro és un recinte totalment tancat. Ni n’entra ni en surt aigua, ni vapor, ni gasos. És més hermètic que un ou. I, en canvi, tots els altres grans i llavors tenen la pell molt més fina i fàcil de pelar.

Des de fa uns quants anys que s’ha divulgat el mecanisme de formació de les crispetes en revistes d’aquí (Sapiña 2005 [+]; Courty & Kierlik Investigación y Ciencia juny 2014, p.88-89), però val la pena tornar-hi a fer una repassada, lligant-ho amb altres processos similars. El midó del blat de moro, com el d’altres espècies, està en forma de grànuls en forma de polígons irregulars d’uns 0,01 mm de mida característica, que tenen al seu interior una petita cavitat de l’ordre de 0,0005 mm de diàmetre. Allà hi ha aigua que està unida amb enllaços febles a les molècules d’amilosa i amilopectina. A 100ºC aquesta aigua no bull, perquè no és aigua líquida pura, però els enllaços febles es fan més febles encara, i les molècules d’aigua poden començar a mobilitzar-se i a alliberar-se de les cadenes del midó, al mateix temps que el midó es gelatinitza. L’aigua està en part en forma de vapor, però la major part és aigua líquida sobreescalfada en equilibri amb el vapor, a la pressió corresponent a la temperatura que tingui el gra. I a mida que s’escalfa la pressió va augmentant fins que és prou alta com perquè el gra rebenti. Això passa a uns 180ºC, i la pressió interior a aquesta temperatura seria d’uns 9000 hPa, que són unes 9 atmosferes de pressió.

Aquest fenomen està relacionat amb el que haviem vist al blog en l’entrada “Ou dur al microones“. (Mans 2012 [+]). Allà un ou dur es reescalfava tant per dintre que rebentava en tallar-lo, perquè la clara actuava de membrana impermeable que frenava l’augment de pressió de l’interior del rovell.

Ou dur al microones, un cop rebentat

Ou dur al microones, un cop rebentat


Tot això d’explosions en recintes tancats té molta importància a la indústria, i fins i tot a la cuina. Alguna vegada he explicat que a casa meva, una de les primeres olles de pressió -la primera “olla del pito“, comprada a Andorra els anys 60- li va explotar a la meva àvia. De fet l’olla no va explotar en el sentit que rebentés, sinó que es va desprendre la tapa perquè estava mal apretada. Hi havia dins verdura bullint, i anava desprenent vapor per la vàlvula, el “pito”. No sé quina causa, potser un cop, va fer que la pestanya de subjecció rellisqués, va quedar la tapa lliure. I va volar fins al sostre. L’olla de pressió només està a 1,2 o 1,4 atmosferes, i això no és gaire: un encenedor de butà o una ampolla de xampany estan a molta més pressió. Però el que va passar és un fenomen una mica similar al de la crispeta: mentre està a pressió, tenim dins de l’olla aigua sobreescalfada, posem a 120ºC. I en treure la tapa, l’aigua es posa a bullir bruscament i se’n vaporitza molta, i tot vaporitzant-se la massa es refreda, perquè aigua a 120ºC i a la pressió atmosfèrica no pot existir. I es refreda aplicant l’energia que li sobra -de 120 a 100ºC- a porcions d’aigua que es vaporitzen bruscament. Es generen uns quants litres de vapor d’aigua. Però el problema és que es generen a tota la massa en ebullició, i les bombolles generades engeguen tota la massa en ebullició cap amunt, i en surt una bona part cap a l’exterior. La massa calenta i pastosa de bledes a 100ºC o més pot anar a la cara de qui estigui per allà, i aquest és el principal risc, a part del cop de la tapa: una cremada notable. Per sort, no va passar,però les bledes van anar per tota la cuina, això sí. I encara podriem relacionar tot això amb la catàstrofe dels Alfacs del 1978, on un camió de propilè reescalfat va trencar-se per la dilatació del líquid interior, i en trencar-se la cisterna es va expandir bruscament tot el contingut. Vaig fer-ne un article ja fa anys [+].

Per què no s’escampa tot el midó per les parets del recipient? Això és degut a les propietats del midó de blat de moro. Les molècules d’amilosa i amilopectina no es descomponen, però amb l’alta temperatura de l’interior, podriem dir que poden relliscar les unes sobre les altres. En el moment en que esclata la pell, baixa bruscament la pressió, i l’aigua sobreescalfada de l’interior passa a vapor, s’expandeix i deforma la massa pastosa de midó. És prou pastosa com per deformar-se i inflar-se, però prou consistent i viscosa com perquè no surti en forma de gotetes independents. A més, en expandir-se el vapor d’aigua, la massa es refreda una mica, i n’augmenta la viscositat. El resultat és la forma esponjosa típica de la crispeta.

Grans i crispetes de blat de moro i d'amarant

Grans i crispetes de blat de moro i d’amarant


Tot això es pot calcular a partir de la física i la química, i hi ha qui ho ha fet. (Hunt, 1991. The Physics Teacher, abril p.230-235; Quinn et al,, 2004 [+]). Per tot plegat la quantitat d’aigua al gra de blat de moro és crucial: massa poca aigua faria que no hi hagués prou pressió interna per esclatar. Massa aigua faria que la massa del midó fos massa fluida i no sortís una bona crispeta. Sembla que el valor òptim és entre 13 i 14% d’humitat. I això s’aconsegueix només amb algunes varietats de blat de moro.

Per fer quatre números, vaig agafar 100 grans (grans, no grams) de blat de moro crus, de la varietat adequada per fer crispetes. Pesaven 15,4 g, i tenien un volum aparent de 22 mL, que és el volum que realment ocupen, no els volums de cadascun dels grans sumats. Al volum aparent s’hi compta també l’espai buit que queda entre grans. Poso una cullerada d’oli (4,4 g) a la paella, i al cap d’una estona a foc viu surten crispetes. 87 de bones, inflades, 12 de dolentes, i n’ha desaparegut una d’esmicolada. Totes ocupen 200 mL -volum aparent, també- , és a dir que s’han inflat gairebé deu vegades. En alguns estudis s’arriben a incrementar el volum fins a 30 vegades. Les crispetes finals pesen 16,7 g. És a dir que en el procés de “crispació” s’han perdut 2,1 g, en part per l’oli que mulla la paella, però també pel vapor d’aigua que s’ha escapar de les crispetes. Les crispetes en tenien un 13% (és a dir 2 g d’aigua). Podem suposar que s’ha perdut molt més de la meitat d’aigua en forma de vapor, i de fet algunes anàlisis mostren que les crispetes tenen només un 2 a 4% d’humitat. Hi ha dispositius comercials per fer crispetes més grans, i es basen en fer que s’inflin al buit. Així l’aigua pot expandir-se més, i tenen més valor comercial.

Les crispetes d’amarant són menys vistoses. A la foto se’n poden veure algunes. Els granets d’amarant són molt petits, menys d’1 mm de diàmetre, i les crispetes que en surten són també molt petitetes. No s’inflen tant com les de blat de moro. I no totes rebenten. Potser cal fer servir un amarant especial per crispetes, com es fa servir un blat de moro especial de crispetes. Els meus resultats en el cas de l’amarant són molt mediocres.

Les crispetes que he fet venen a tenir una densitat d’uns 0,08 g/mL, que és molt poc. Però encara es poden fer de menys densitat. Hi ha empreses que es dediquen a fer crispetes per a embalar objectes fràgils. Les propietats mecàniques de la crispeta són, des d’aquest punt de vista, millors que les del polistirè expandit o porexpan: són més elàstiques, menys denses, biodegradables i es poden fabricar in situ, cosa que el porexpan no ho permet.

Quan vagis al cinema, pots demanar les teves crispetes, salades o dolces, en racions de 150 g, 225 g o una galleda sencera, on no hi deu haver menys de 500 g. Això i una beguda dolça de litre, el berenar ideal… per als propietaris del cinema, que hi guanyen més amb els menús que amb les entrades. Una ració de crispetes salades de 150 g aporta 750 kcal, més d’un terç del total del dia. I amb una cola de mig litre 200 kcal més… I hi ha qui s’estranya de que hi hagi obesitat infantil i juvenil.

Un "menú" de cine.

Un “menú” de cine.


LA PIZZA DE RETORN AL FUTUR

25/10/2015
La pizza deshidratada abans, i després d'hidratar-se. L'hidratador és Black&Decker, per cert.

La pizza deshidratada abans, i després d’hidratar-se. L’hidratador és Black&Decker, per cert.

Un científic –Christopher Lloyd– i un jove –Michael J.Fox– viatgen en el temps, des deL 1985 fins el 21 d’octubre de 2015. Els que tenen més de quaranta anys potser recorden la pel•lícula “Back to the Future[+] , que aqui es va dir “Retorn al futur” i que ara ha tornat a tenir força ressò perquè avui som als dies del futur de la pel•lícula. En aquell 2015 imaginat es troben amb un món nou, amb diferents sistemes avançats. Els cotxes són voladors, els monopatins floten a l’aire, i les pizzes es compren liofilitzades: són petites i es poden hidratar en un aparell domèstic que les fa créixer fins a la mida normal. No van encertar aquesta predicció, com tampoc no van atinar a predir l’existència de telèfons mòbils ni internet.

Varem parlar de prospectiva i futurologia en una entrada anterior, arran d’una exposició al CosmoCaixa encara visitable [+]. Normalment els futuròlegs i els que fan prospectiva s’equivoquen considerablement, perquè no tenen en compte que les meravelles que pronostiquen s’han de pagar; a més, no es poden aplicar totes les novetats alhora. En altres casos els futuròlegs no l’encerten perquè les novetats que proposen no solventen problemes gaire importants per als ciutadans, que no les demanen: és la sempre citada nevera que farà la compra per internet, de la que ningú no se’n refia perquè pot decidir comprar tomàquets sense que el comprador els vegi primer. En altres casos certs futuròlegs extrapolen la tecnologia introduint errors científics, i el cas de les pizzes n’és un exemple.

En la pel•lícula citada es mostra que el 2015 compren pizzes liofilitzades que després hidraten en un aparell domèstic amb certa semblança amb un microones. És possible aquesta tècnica?

¿Què és la liofilització? Aquesta operació, que també es coneix com a criodeshidratació, en essència és un procediment d’assecament. Els procediments clàssics per assecar fruites i verdures, o carn o peix, són ben coneguts. Es procura tenir l’aliment que es vol assecar en làmines el més fines possible, si es pot. L’aliment es deixa a un lloc sec, fred i a ser possible amb aire corrent. La humitat ambiental ha de ser baixa perquè hi pugui haver transferència d’aigua de l’aliment a l’aire. La temperatura alta és perillosa perquè pot fomentar la presència de microorganismes, però al mateix temps va bé perquè la pressió de vapor de l’aigua és superior i així l’aliment s’evapora més rapidament. A la pràctica, les dues opcions més usades són l’assecatge al sol en ambients secs, o l’assecatge en ambients freds i corrent d’aire, com a les caves de pernils i embotits. La presència de sal ajuda a la conservació dels aliments per diversos mecanismes. Els principals són que la sal ajuda a la deshidratació, i també evita que els microorganismes puguin sobreviure-hi. El fumat dels aliments és una tècnica alternativa, que també asseca gràcies a l’alta temperatura del fum.

La liofilització és també un procés d’assecament, però partint del producte congelat, és a dir del producte en que l’aigua està en fase sòlida, com a gel d’aigua. Aquesta aigua sòlida està barrejada amb els nutrients i la fibra de l’aliment. L’eliminació de l’aigua té lloc directament des del gel sòlid a l’aire, sense que l’aigua passi per la fase líquida, mitjançant un mecanisme fisicoquímic conegut com a sublimació. Aquest mecanisme, que sempre sembla una mica misteriós, és molt freqüent a la natura. Bona part de la neu que cau a les altes muntanyes i que no pot fondre perquè la temperatura és menor de zero graus, sublima cap a l’atmosfera. Més a prop, el gel que es forma a les cares internes dels congeladors dels supermercats quan s’obre la porta, sublima també i el vapor generat va a condensar-se a la part interior de l’aparell, on hi ha el punt de més fred. Pots veure’n l’explicació tècnica aquí [+] . Es considera que la liofilització s’usa des de temps inmemorial als Andes, tant per a conservar aliments com per a la conservació de les mòmies. Les grans alçàries, amb entorns sempre molt per sota de zero graus i per tant amb els cossos congelats, i amb aire molt sec, permeten l’asssecament per sublimació.

La liofilització industrial comença amb la congelació de l’aliment, mitjançant un sistema congelador, freqüentment amb nitrogen líquid. A continuació l’aliment congelat es diposita en safates en capes de poc gruix. Es fa el buit al recipient, i s’escalfen suaument les safates amb resistències elèctriques, per subministrar l’energia necessària per a la sublimació. El gel dels teixits de l’aliment es vaporitzen lentament, és a dir, sublimen. Aquest vapor d’aigua s’extreu amb la bomba de buit i es llença a l’atmosfera.

Aquest procediment s’havia aplicat principalment a l’assecament de medicaments i productes industrials. Des de fa anys que les expedicions a zones polars, a l’espai o a altes muntanyes usen aliments liofilitzats. Per reconstituir-los n’hi ha prou amb afegir-hi aigua calenta, que els hidrata i els torna a donar la consistència humida típica de la major part d’aliments. Ha estat amb el moviment culinari basat en l’ús d’equipament de laboratori a la cuina quan la liofilització s’ha aplicat també a la cuina.

Liofilitzadora de cuina, molt similar a les de laboratori L'aliment a assecar es col·loca a les safates superiors del recipient de vidre.  Fes clic per ampliar.

Liofilitzadora de cuina, molt similar a les de laboratori L’aliment a assecar es col·loca a les safates superiors del recipient de vidre. Fes clic per ampliar.


Si el producte que es liofilitza és una dissolució, al final es té un granulat sec i molt porós: és el cas de certs cafès solubles. Però si es liofilitzen peces sòlides com fruites o trossos de carn o de peix, el resultat és una peça de la mateixa forma i quasi les mateixes dimensions que la original, però que ha perdut quasi tota l’aigua, pesa molt menys, i és molt porosa. Aquest producte liofilitzat es pot consumir directament, es pot impregnar amb algun bany complementari, o es pot reconstituir amb aigua. Les aplicacions a l’alta cuina són diverses. El procés és delicat, però, i requereix molta atenció. Els aparells liofilitzadors són cars i complexos, i no sembla que hagi de ser una tècnica que es popularitzi a molts restaurants. El que serà més probable, i ja està passant, és que hi hagi empreses alimentàries que liofilitzen tota mena de productes amb destí al consumidor final, sigui domèstic o restaurador.

La pizza liofilitzada és perfectament possible, i a més té la forma plana idònia per a obtenir-la. Però el resultat no seria una pizza petita, sinó una pizza de les mateixes dimensions, molt porosa. Una pizza Margherida de tomàquet, formatge i alfàbrega -els colors de la bandera italiana- , té un 56% d’aigua. Una pizza totalment seca, per tant, pesaria un 56% menys. Aquest assecament elimina l’aigua de les estructures cel•lulars i l’aigua intersticial, però les unions entre les membranes cel•lulars, els midons i les proteïnes dels aliments, un cop assecats, mantenen les dimensions quasi sense variació, i per tant s’obtindria una pizza de mida estàndar. i una mica menys de la meitat de pes.

Podria fer-se una pizza diminuta que després, amb aigua, creixés fins a la mida d’una pizza normal? Probablement, però la tecnologia no hauria de ser la de liofilització d’una pizza prèvia, sinó l’ús de la tecnologia de gels, i ja no seria una pizza. Un gel és un sistema dispers bicontinu, en el que la fase sòlida té una estructura com d’esponja, i la fase líquida està inclosa en els intersticis de la fase sòlida, però no separada com a gotetes sinó com a líquid que impregna tota l’estructura, i que és retingut per les característiques hidrofíliques de la substància que compon el gel. Determinats gels, com els que s’usen per a subministrar aigua a les plantes, es presenten en forma de boletes esfèriques. Quan s’assequen, l’elasticitat de la fase sòlida del gel li permet que la boleta es faci petita, perdent un 90% del seu volum.

Una “pizza” constituida per un agregat de boletes gelificades i dessecades unides entre elles, permetria potser que amb aigua tota l’estructura creixés per tot arreu, reconstituint-se la forma global de la pizza. Potser estic inventant alguna cosa impossible, perquè la juxtaposició de boletes en sec requeriria d’algun tipus d’unió que en créixer les boletes no es trenqués, però com a idea inicial penso que podria ser factible… Tindria una certa similitud amb una hipotètica pizza de crispetes que creixés al microones.

Ho veurem el 2045?

Gelat d'astronauta, tal com el venen a les botiques dels museus de ciències americans. Es consumeix  sec, sense hidratar.

Gelat d’astronauta, tal com el venen a les botiques dels museus de ciències americans. Es consumeix sec, sense hidratar.


PRESSIÓ EN CABINA

07/10/2015

Volarem amb una pressió en cabina equivalent a una alçada de 8000 peus“. Hem escoltat aquesta frase pràcticament cada vegada que hem pujat a un avió per fer un trajecte mínimament llarg. I ens podem preguntar: per què s’ha de despresuritzar un avió? No podria volar amb una pressió interior com la de l’aeroport de sortida? O per què no la pressió de l’aeroport d’arribada, si és que és diferent? O per què no la pressió de l’altura a la qual està volant en cada moment l’avió, i si hi hagués un forat accidental al fuselatge no hi hauria risc de que el forat et xuclés?

Aquest darrera opció, millor que la descartem d’entrada. Els avions volen a uns 10000 m d’altura o més, i a aquests nivells la pressió atmosfèrica és només de 29 kilopascals (kPa). Recordem que la pressió atmosfèrica, a nivell del mar en condicions d’atmosfera estable, és de 1 atm, 760 mm Hg, 101 kPa, o 1010 hectopascals (hPa) que és com ho donen en els telenotícies. És a dir, que a 10000 m d’altura la pressió és només del 28% de la del nivell del mar, i això vol dir només el 28% d’oxigen: la probabilitat de que ens agafés hipòxia és pràcticament segura. Per això els que fan expedicions en globus o avions especials fins a l’estratosfera han de vestir trajos presuritzats i portar aire en bombones. Recordem Alan Eustace, que el 2014 va baixar en paracaigudes des dels 41150 m, on havia pujat en globus, i va caure a una velocitat màxima de 1322 km/h, superant el rècord d’alçària i velocitat de Fèlix Baumgarten de 2012, tan publicitat. A aquestes altures ja no hi ha quasi aire. D’aquesta manera el fregament del cos del paracaigudista és quasi nul i l’acceleració de la gravetat fa que la velocitat sigui progressivament creixent, fins que a zones amb més densitat d’aire hi ha un decreixement de l’acceleració fins a la velocitat màxima, i la posterior reducció de velocitat pel fregament i per l’obertura del paracaugudes.

Variació de la pressió amb l'alçària

Variació de la pressió amb l’alçària


Per tant, la cabina de l’avió no pot anar a la pressió de l’aire del seu entorn. Però, ¿per què va a la pressió equivalent a uns 8000 peus, és a dir, a una alçària equivalent de 2500 m i no a més ni a menys?

L’explicació rau en la resistència de materials, no en el confort dels passatgers. Imaginem que un vol parteix del nivell del mar. Des del moment d’emprendre el vol l’aire atmosfèric va reduint la seva pressió, i si l’interior de l’aparell estés a la pressió inicial, la diferència de pressió entre l’interior i l’exterior aniria augmentant. Si no es corregís la pressió interior, hi arribaria a haver una diferència de pressió entre dins i fora de 101-29= 72 kPa. Menys d’una atmosfera.

Aquesta pressió no sembla molt gran, si la comparem amb la pressió dins d’una ampolla de cava (uns 600 kPa) o a un encenedor de butà (uns 250 kPa). Aquests recipients no explosionen perquè tenen un diàmetre molt petit i unes parets relativament gruixudes, però un avió dels grans pot tenir fins a set metres de diàmetre: un Airbus A380 fa 7,15 m. Com més diàmetre té, tant més gruixudes (i més pesades) haurien de ser les parets per resistir una determinada diferència de pressió. Per afavorir la seguretat interessaria que la pressió de l’interior de l’avió fos la menor possible.

S’ha d’arribar a un compromís, doncs, entre la pressió que poden suportar els passatgers amb comoditat i sense malestars´-que voldrien com més alta millor-, i la pressió per minimitzar el gruix de les parets, que els fabricants voldrien com més baixa millor. El compromís al que s’ha arribat és la pressió aproximada d’una pressió en cabina de 75 a 80 kPa, equivalent a alçàries d’entre 2500 i 2100 m. A aquesta alçada hi ha l’equivalent al 75% o el 79% de l’aire del nivell de mar, no hi ha hipòxia i només a una minoria molt minoritària li pot aparèixer el mal de muntanya. Els nous avions usen i usaran materials més resistents i menys pesats, com aliatges d’alumini i liti, titani o materials compostos amb polímers, i podran tenir pressions interiors una mica superiors, que sembla que a més reduiran la fatiga dels passatgers. La pressió interior de cabina serà, en aquests casos, l’equivalent a 1800 o fins i tot 1500 m. Ho veurem en el futur. (El primer comentari a aquesta entrada ens mostra que el futur ja és aquí: Norwegian Airlines en els seus avions 787 Dreamliner els posen a 1800 m d’alçària equivalent).

Quan l’avió és en vol a alçades superiors, contínuament es va comprimint -i escalfant- aire de l’exterior cap a la cabina, per compensar les petites fuites que hi ha inevitablement. Aquelles vistoses imatges de les pel•lícules d’acció dels avions que es despresuritzen bruscament per un forat que es genera al fuselatge per una explosió o un mísil i els passatgers i els objectes són engolits pel forat, poden arribar a ser certes; per sort són infreqüents. Si hi ha una despresurització brusca -tècnicament, una descompressió explosiva– el principal problema és, no tant el que el forat t’engoleixi, sinó la pèrdua de coneixement dels passatgers i dels pilots per la brusca baixada de pressió, i el conseqüent estavellament de l’avió: si el forat és prou gran, es pot descomprimir tota la cabina d’un avió enorme en menys d’un segon, amb l’aire sortint a velocitat supersònica [+].

Secció de dos avions grans per a passatgers . Fes clic per a ampliar.

Secció de dos avions grans per a passatgers . Fes clic per a ampliar.


Al llarg de molts viatges en avió m’he entretingut a anar prenent nota, amb un altímetre, de les alçades equivalents a que pressuritzaven la cabina de l’avió. És un altímetre en un rellotge, que realment mesura la pressió i la converteix a alçària. Els smartphones que no tenen sensors de pressió disposen d’apps que fan la funció d’altímetre via GPS: detecten la posició de l’aparell i interpolen l’alçària del lloc a partir de la lectura dels angles dels diferents satèlits captats pel GPS. Un procediment alternatiu, quan hi ha connexió a Internet, és combinar la posició donada pel GPS amb un mapa topogràfic del terreny, i d’aquí en dedueixen l’alçària. Naturalment aquests sistemes són inaplicables a l’interior d’un avió

Gairebé sempre mantenen la presurització de les cabines entre 2000 i 2300 m. El que sí que varia d’un vol a un altre és el temps que tarden a arribar a aquesta pressió, i el ritme que en aterrar augmenten la pressió fins a arribar a l’atmosfèrica. Poden tardar des de pocs minuts fins a més de mitja hora. No he detectat pautes d’actuació entre els avions d’una mateixa companyia. Sembla que això queda a la lliure decisió dels pilots, o a sistemes programats automàtics, però no programats amb els mateixos paràmetres.

Un dels darrers viatges el vaig fer a Colòmbia. Bogotà és la segona capital sudamericana a més alçària, a 2600 m, com Quito. La primera, amb diferència, és La Paz, a 3600 m. Doncs bé, el vol de Medellín -a 2100 m- fins a Bogotá va mantenir una pressió de cabina igual a la que hi havia a Medellín, uns 2100 m, i al final, quan faltaven 20 minuts per arribar, van reduir la pressió fins a la de l’aeroport de Bogotá, a uns 2540 m. Al vol de Bogotá a Barcelona van anar augmentant la pressió des de la de l’aeroport -2450- fins a la de creuer, 2300 m, i aproximant-nos a Barcelona van anar augmentant-la fins a 0 m al llarg dels darrers 45 minuts.

Per a la gent que pateix problemes auriculars amb les compressions i descompressions brusques, valdria la pena dissenyar protocols que els facilités el confort, que ja prou pena hi ha en inquibir-se en els cubicles dels avions, cada cop més estrets i amb menys espai personal.

Un smartphone amb baròmetre digital

Un smartphone amb baròmetre digital


TESLA I EL VOL DELS COLOMS

08/07/2015

Actualització l’11-7-15 gràcies a les aportacions dels comentaris

Nikola Tesla en la seva imatge més coneguda. Font: Internet.

Nikola Tesla en la seva imatge més coneguda. Font: Internet.

Nikola Tesla va néixer a un poblet de l’Imperi Austríac, actualment de Croàcia, el 1856; i va morir a Nova York el 1943. Va ser un enginyer que treballà a Budapest i París, a una empresa d’Edison. Va desenvolupar la teoria del corrent altern, que li va permetre fer un invent del que en tenim a casa una pila d’exemplars: el motor d’inducció, el motor elèctric. A casa devem tenir més d’una dotzena de motors: n’hi ha a les rentadores, als cotxes, a les màquines d’afaitar, els ventiladors, les batedores, minipimers, picadores 123’s, discos durs giratoris, reproductors de CD, DVD, blu-ray, etc.

Tesla era de relació personal difícil. Va trencar amb Edison i va vendre la patent del corrent altern a Westinghouse. Tesla va fer més de 700 patents. Va dissenyar part de la central elèctrica de les catarates del Niàgara, on es va mostrar la superioritat de la transmissió de l’electricitat per corrent altern en lloc del corrent continu. Va fer invents irrealitzables, va ser molt visionari, va morir carregat de deutes i amb comportaments excèntrics… Els darrers anys la seva figura s’ha popularitzat molt, per diverses raons. Durant un temps es va dir que va rebre el premi Nobel de Física juntament amb Edison, però després d’episodis confosos, es van canviar els guardonats pels Bragg, pare i fill cristal•lògrafs. Pel que sembla, és una llegenda urbana que la Wikipedia manté viva [+].

Un tesla és el nom d’una unitat del Sistema Internacional, complicada d’explicar. Intentem-ho. Imaginem un cercle obert de coure i un imant que es mou al seu interior endavant i endarrera. En aquestes condicions es genera un voltatge entre els extrems del cercle metàl•lic. Això és la base de la generació del corrent altern. Doncs un weber és el flux magnètic – la “força” de l’imant- que és capaç de generar un volt quan l’imant passa des del centre de l’anell (màxima intensitat del camp magnètic) a fora (camp magnètic zero) en un segon. I un tesla T és la densitat de flux magnètic, definida com un weber per metre quadrat. Com més “potent” és un imant més tesles té. Els imants de neodimi (que realment són d’aliatges de neodimi, ferro i bor) són actualment els imants comuns més potents. Ja he dit que era complicat d’explicar el que és un tesla

Però també Tesla Motors és una empresa californiana de Palo Alto [+] [+] que fa vehicles elèctrics esportius. Va ser fundada per Elon Musk, un inventor i empresari visionari creador de PayPal i de SpaceX. El vehicle Tesla model S té un motor a cada roda, gadgets com conducció quasi-automàtica amb canvi de carril, etc, i una autonomia de quasi 500 km. Per ara valen de $60000 a $90000, i en prepara per a l’any 2016 el model X de $35000. Són vehicles elèctrics-elèctrics, [+] és a dir, que s’han d’endollar a algun punt, i aquesta electricitat s’ha d’haver obtingut d’algun lloc. Tesla ha desenvolupat supercarregadors que carreguen les bateries del vehicle en minuts en lloc d’hores. N’hi ha, a Europa, a diversos hotels de ciutats importants, quasi totes per sobre del paral•lel de Marsella. La primera setmana del juliol de 2015 es va instal·lar al pàrquin del hotel Ibis Budget de Girona (C. Francesc Ferrer Gironès) els primers 4 supercarregadors Tesla de Catalunya i Espanya, als que seguiran instal·lacions a Tarragona i Saragossa.

Un vehicle de Tesla Motors. Font: l'empresa

Un vehicle de Tesla Motors. Font: l’empresa

Dos dels quatre supercarregadors Tesla al pàrquing de l'hotel Ibis Budget de Girona. Foto de l'autor (10-7-15)

Dos dels quatre supercarregadors Tesla al pàrquing de l’hotel Ibis Budget de Girona. Foto de l’autor (10-7-15)

Les bateries Tesla estan formades per milers de petites cèl•lules, com les dels portàtils, instal•lades en serie i paral•lel, que fan que siguin més barates , més eficaces i més fàcils de refrigerar que altres bateries de cèl•lules més grans.

He estat recentment a San Francisco i he vist milers de Toyota Prius, però només un Tesla. Potser a Silicon Valley n’hauria vist més. He llegit que una empresa navarro-andalusa, Velántur Cars, vol fer pel 2016 el primer elèctric de luxe espanyol. Ja veurem.

El 30 d’abril de 2015 l’empresa Tesla Motors va presentar la seva darrera novetat: la PowerWall, la paret energètica. La idea és que a les parets de les cases hi hagi panells que serien bateries acumuladores d’energia elèctrica. La bateria Tesla d’ús domèstic comercial és de 7 o 10 kWh de càrrega. Preus per ara, de 2700 a 3100 €. El problema és que aquestes bateries -totes les bateries- acumulen electricitat en forma de corrent continu, que en les disposicions habituals arriben a 350-400 V quan tots els aparells amb un motor, que són la majoria, van amb corrent altern. Cal, doncs, a més, instal•lar un convertidor.

Per als químics: les bateries són d’ió de liti, amb un líquid tèrmic que en regula la temperatura quan s’estan carregant i escalfant. L’electrode positiu o ànode d’aquestes bateries sol ser d’òxid complex de liti, níquel, manganès i cobalt, de més eficiència que els antics d’òxid de liti i manganès o de fosfat de liti i ferro. L’electrode negatiu o càtode sol ser de grafit, de titanat de liti, o, per a petits aparells electrònics, d’aliatges d’estany i cobalt o de silici i carboni. S’estan dissenyant a la Xina bateries amb vanadi, i al Japó amb alumini.

Cada Powerwall o mòdul de bateries Tesla pesa 100 kg, i fa 1,3 m d’alt, 0,86 m d’ample i un gruix de 18 cm. Poden subministrar fins a 3,3 kW. Actualment les cases tenen subministraments elèctrics molt superiors: a casa, per exemple, 6,6 kW, i en altres vivendes “tot elèctric” molt més. L’objectiu d’aquestes bateries és que les cases que ja tenen panells solars fotovoltaics tinguin un sistema de magatzematge d’energia que millori les bateries actuals. En teoria, amb uns 20 m2 de panells solars i amb un parell de Powerwalls grans la casa podria arribar a ser autosuficient i independent de la meteorologia

A casa meva, mirant consums reals, hem consumit 967 kWh en 130 dies. 7,43 kWh cada dia, de mitjana, a l’hivern: cada rentadora, uns 2: cada rentaplats, 3 més; algun calefactor elèctric momentani, bombetes, microones, refrigerador, forn, altres electrodomèstics, ordinadors… I no consumim gaire: ni tenim calefacció ni cuina elèctriques. Vol dir que amb aquests 7 kWh la Powerwall petita és molt justeta, i no permet que la vivenda sigui autosuficient. El rentaplats i la rentadora de roba escalfen aigua amb electricitat, tremenda despesa absurda. Però no hi havia, quan les varem comprar, màquines que es poguéssin endollar a la xarxa d’agua calenta.

Tres mòduls de Powerwall. Font: Tesla Motors.

Tres mòduls de Powerwall. Font: Tesla Motors.


Malgrat l’èxit inicial que Tesla ha tingut als EUA, on han venut més de 50000 panells elèctrics en pocs dies, no crec que aquest sistema tingui èxit aquí. Les limitacions legals a la producció domèstica d’electricitat a Espanya (reglament de 2011) fan que el sistema no es pugui connectar a la xarxa elèctrica, sinó que són legals només per a cases aillades. A altres paísos sí que es permet la combinació fotovoltaixa domèstica + xarxa.

Veurem què passa en el futur. Si no es canvia la composició de les bateries, faltarà liti. Xile, l’Argentina i Bolivia en tenen importants jaciments, però la quantitat que en faria falta per tenir bateries a totes les cases i als vehicles seria exorbitant. Alguna cosa s’haurà d’inventar, usant altres tipus de bateries menys costoses. Per ara, penso que somiar aquí, amb la legislació actual, amb un sistema “tot elèctric, tot bateries” és fer volar molts coloms, que volen amb l’energia química dels aliments que mengen.

Sistema energètic domèstic amb Powerwalls i inversors Fronius. Font: Energética Futura.

Sistema energètic domèstic amb Powerwalls i inversors Fronius. Font: Energética Futura.


ALICIAICILA

08/05/2015

Portada del llibre "Sietria"

Portada del llibre “Sietria”

Aquesta entrada és compartida amb el meu blog “Alícies, naturalment” [+]

Alguna vegada he llegit que les Alícies són els llibres més citats. Jo, de fet, les he citat des de molt abans que me’n posés a fer col•lecció. Els motius deuen ser diversos. En primer lloc, i sobre tot, la ingent quantitat de frases enginyoses, de doble sentit, de lògica, de jocs de paraules que contenen. Després, la peculiaritat de moltes situacions de les novel•les, relacionades amb l’espai, el temps i les dimensions. I, finalment, la varietat de personatges que en molts casos són arquetips de personalitats peculiars. Per tant, els filòsofs, els matemàtics, els psicòlegs, els sociòlegs, els lingüistes, els pedagogs, els físics i fins i tot els químics hi trobem aspectes que ens interessen o ens valen com a exemple de les disquisicions erudites o divulgatives. Costa més de trobar-hi relació amb biòlegs, geòlegs, astrònoms o enginyers, però fins i tot aquests poden aprofitar-ne alguna cosa.

Els científics en general -distingint-los dels científics socials o dels de la salut- som especialment afeccionats a les Alícies, i jo diria més al Mirall que a les Meravelles. En el Mirall Carroll va poder escriure un llibre des de zero, més planificat, amb l’estructura del joc d’escacs més tancada i definida. I amb menys bogeries, pel meu gust.

El llibre que es comenta a aquesta entrada és un breu text de divulgació científica sobre el concepte de simetria, en les seves vessants geomètrica, física, química i mineralògica. La seva relació amb les Alícies és que n’usa diversos exemples per a il•lustrar els conceptes científics, i això ens permetrà repassar-los breument. El llibre és escrit pel professor Miquel Àngel Cuevas, catedràtic emèrit de Cristal•lografia de la Universitat de Barcelona, i bon amic i col•lega d’un servidor.

A la introducció ens cita la frase d’Alícia quan es posa a llegir el poema Jabberwocky: “És, ben segur, un llibre del Mirall. Si el poso davant d’un mirall les paraules es tornaran del dret“. El perquè l’Alícia en travessar el mirall no s’ha invertit ella mateixa, sinó que s’ha mantingut com a l’altre costat, és un misteri que Carroll no explica, però que Tenniel va il•lustrar. Atesa l’extraordinària minuciositat amb que Carroll revisava les il•lustracions dels seus llibres, vol dir que ho volia així.

Tweedledee i Tweedledum segons Disney. Fes clic per ampliar

Tweedledee i Tweedledum segons Disney. Fes clic per ampliar


Un altre exemple citat per Cuevas en el capítol “Simetria i paraules” és el de la “melmelada ahir i melmelada demà, però no melmelada avui“. És, en certa manera, una simetria temporal, deguda a que “quan vius a l’inrevés, et mareges una mica…“. Futur i passat, simètrics respecte al present. I, a l’episodi de l’eruga, dreta i esquerra del bolet són indistingibles.

Al capítol “Dreta i esquerraCuevas es pregunta: “Tweedledum i Tweedledee són simètrics?“. En el dibuix de Tenniel semblen idèntics, però al text se’ns diu que un allarga la mà dreta a Alícia i l’altre l’esquerra. Potser un era dretà i l’altre esquerrà, però Cuevas ens diu que entre ells són enantiomorfs, paraula experta que vol dir que són simètrics, no només en les aparences sinó també al seu interior estructural, inclosos els òrgans. Un d’ells tindria un situs inversus total, que ens diuen els anatomistes: el cor a la dreta, el fetge a l’esquerra… però no per això aquesta persona seria esquerranes. Les il•lustracions de Disney són ambigües: a vegades semblen idèntics i a vegades simètrics. Els bessons de la pel·lícula de Tim Burton semblen també idèntics.

Els bessons segons Tenniel. Fes clic per ampliar

Els bessons segons Tenniel. Fes clic per ampliar


Al darrer capítol, “Simetria i punt final” imagina que el pas de l’Alícia del món real al món del Mirall seria equivalent al pas del món de la matèria al de l’antimatèria. Encara que el nom d’antimatèria sembla esotèric, és ben real. Es refereix, simplement, a la matèria formada per partícules amb propietats -càrrega elèctrica i altres- oposades a la matèria normal. Si un àtom està format per un nucli amb neutrons -neutres-, i protons -positius- i a la perifèria hi ha electrons -negatius- un àtom d’antimatèria tindria un nucli amb neutrons i antiprotons -negatius- i positrons, electrons positius. Això no és ciència-ficció. la tomografia per emissió de positrons és una coneguda tècnica de diagnòstic que fa això, usar positrons. El contacte amb matèria i antimatèria és fatal, perquè s’anihilen mutuament i desprenen només radiació. Si l’Alícia seguís sent matèria, i el Mirall antimatèria, es destruiria tot plegat en el moment en que l’Alícia comencés a passat a l’altre costat. Naturalment, en Carroll no sabia res d’això perquè encara no s’havia descobert l’estructura de l’àtom.

En canvi, un aspecte que em sorprèn que Cuevas no expliciti és la pregunta de l’AlíciaSerà bona la llet del mirall?“. Martin Gardner [+] explora aquesta pregunta destacant que entre les molècules de la llet hi ha proteïnes, sucres i greixos, i algunes d’aquestes molècules existeixen -aquí – en dues formes moleculars. Per resumir,en dues formes enantiomorfes, és a dir, dues formes que tenen una estructura especular. El nostre organisme només reconeix els gustos i es pot nodrir amb una d’aquestes formes, però no l’altra. Per tant, la llet del Mirall estaria formada per molècules especulars de les d’aquesta banda, i el nostre organisme no les notaria com a dolces, ni les podria assimilar. Si l’Alícia del Mirall és l’Alícia “d’aquí” no creuria que és llet. En podria beure, però no l’alimentaria de la mateixa manera. Però si es transmutés en l’Alícia especular, sí. Tampoc Carroll ens diu res d’això, perquè Pasteur encara no havia fet ni publicat els seus estudis sobre enantiòmers.

Jorge Wagensberg [+] especula encara amb una altra analogia del Mirall. Imagina que els nombres de la nostra banda del mirall són els nombres reals, que inclouen els naturals 1, els enters -3, els decimals 3,12, els racionals 1,333…, i els irracionals com pi (3,141592…) o l’arrel quadrada de 2. En canvi al Mirall hi viurien còmodes els nombres imaginaris, com i (l’arrel quadrada de -1 i nombres similars) i els complexos (suma d’un nombre real i d’un imaginari). No, malgrat que es denominen imaginaris no ens els podem imaginar: I és que els nombres imaginaris no és que no existeixin com si fossin unicorns, que sí que els podem imaginaar. Els nombres imaginaris existeixen en les matemàtiques, s’estudien al batxillerat i permeten resoldre problemes matemàtics i físics de diversos tipus, per exemple tot el que es refereix al corrent elèctric altern. El que passa és que no els visualitzem tan fàcilment com sí que visualitzem els altres nombres, tots al llarg d’una recta infinita a la que hi anem intercalant nombres.

Que lluny hem anat a parar des de l’Alícia

FITXA DEL LLIBRE
Títol: Simetria. Un passeig interdisciplinari Contingut: Llibre de divulgació científica, amb alguns exemples trets de les Alícies
Idioma: català. Il•lustracions: diversos autors, i entre ells Tenniel .
Autor: Miquel Àngel Cuevas Diarte.
Editorial: Publicacions i Edicons de la Universitat de Barcelona, Barcelona (2015). Mida: 21*15 cm, rústica. 126 pàg. Preu: 15 € ISBN: 978-84-475-4216-1

Els bessons segons Tim Burton

Els bessons segons Tim Burton