PUBLICITAT JABBERWOCKY

16/11/2017

Twas brillig and the slithy toves
Did gyre and gimble in the wabe
All mimsy were the borogoves
Ant the mome raths outgrabe.

Borogoves, raths i toves, segons Tenniel.

Així comença el celebèrrim –per a uns quants- poema Jabberwocky, de Lewis Carroll, inclòs a la segona part de les Alícies, la Through the Looking-Glass. El poema és el més famós dels poemes nonsense, una branca de la literatura que es va cultivar a l’època que Carroll escrivia les seves obres, i hi ha molts escriptors que en van fer.

En el mateix llibre, el personatge Humpty Dumpty dona algunes idees de què són i què volen dir aquests termes imaginats, idees absolutament boges sobre etimologies absurdes o paraules-maleta fetes per la condensació de dues altres paraules. Fins i tot l’il•lustrador Tenniel va dibuixar alguns d’aquests toves, borogoves i raths, que de la lectura del poema clarament es detecta que són animals però no podem imaginar-los, d’entrada.

Els traductors van bojos per fer una versió que respongui al poema original, ple de paraules sense sentit. Hi busquen la sintaxi genuïna de l’idioma, i noves paraules eufòniques inventades, que responguin al sentit –sentit imaginat- original però que siguin coherents amb la llengua a la qual tradueixen. Per exemple, una de les versions en català d’Amadeu Viana (1998) es titula Xerramicós i comença dient

Dens era dens quan la brova fircant
gorsava i esmeia en la drana.
Tot ho imutava la sardatxana
i anardava les grates lo lutant.

O, en castellà, la versió de Marià Manent (1944), titulada El Dragobán i que a mi és una de les que més m’agraden:

Llegaba ya el hervín. Blendes casquines
huldaban y jarcían en el gardo..
Calígonos estaban los cibines
y venía el verdal con paso tardo.

Si el lector sap castellà o català –al menys, català en sap segur, i castellà gairebé segur també-, detecta ràpidament les paraules sense sentit inventades pels traductors, com sardatxana o cibines.

Vegem-ne ara una altra traducció, inèdita fins avui, de la que publico per primer cop el començament:

Es el candelo, y los gallardos tovos
en temporil groquean y grojean,
sin romeos acurban los borogovos,
lasradas momesasturias prendan.

Aquests versos són l’inici de la traducció del Jabberwocky Jerigoníada– en mingaña, un argot d’ofici inintel•ligible per al profà, de sintaxi castellana, específic dels esquiladors, cardadors, i matalassers que treballaven la llana a Castella i Aragó. Blanca Gotor, que és filla d’un d’aquests operaris i professora d’institut a Barcelona, està recuperant aquest argot i transcrivint-hi contes infantils, recopilant vocabulari i difonent-lo sempre que en té ocasió.

Estic segur que gairebé cap dels lectors coneix aquest argot, jo tampoc el coneixia [+]. N’existeix un diccionari [+]. Quan llegim el poema citat en mingaña, ¿com podem identificar els termes que realment són del mingaña dels termes inventats per l’autora perquè sonin i semblin de mingaña? Jo no ho sé distingir. En català sí, perquè en sé i sé que la sardatxana és un invent. O en castellà és un invent l’hervín. Però, ¿és en mingaña un invent el candelo? ¿O los tovos?. I el mateix ens passaria en qualsevol altre idioma que no coneixem.

A més del mingaña, hi ha altres argots d’ofici com la gacería [+] i fins i tot podriem considerar-hi la lingua franca o sabir, que és una parla de mariners mediterranis ja extingida, però que es va resucitar ara fa uns anys. Es va comentar a aquest blog perquè hi ha l’Alícia traduida [+].

INCÍS
Lector, si estas interessat en l’Alícia, o en el Jabberwocky, et convidem a la segona jornada Delícies d’Alícia, de la UB, del 23 de novembre de 2017 a les 16:15, amb el tema monogràfic Jabberwocky. Allà es presentarà completa la versió del Jabberwocky al mingaña, i detalls de la traducció, entre moltes altres coses interessants, incloses música, vídeo i recitatius, Més informació: [+].
FINAL DE L’INCÍS.

És habitual trobar Jabberwockies a la vida de cada dia. Llegim la publicitat d’un cosmètic on ens diu que té cèl•lules mare vegetals, que hi ha posat coenzim Q10, o que té àcid hialurònic, o urea, o col•làgen o retinol o pyrithyone o liposomes., Uns preparats contra la grip contenen oscillococcinum. Hi ha la dieta alcalina, la bona, i la dieta àcida, la dolenta. A la publicitat de iogurts hem vist i veiem que contenen Saciactiv, Calciforte o fitosterols, els detergents són o eren densoactius, i contenen oxigen actiu. I fins i tot el Renault Clio venia, segons els publicitaris, amb Zirithyone.

Tot plegat és un llenguatge Jabberwocky, tècnic o científic, incomprensible per a la majoria dels lectors. Una persona no química o no farmacèutica no pot saber si aquests termes existeixen, si corresponen a substàncies reals, i si serveixen per a res. Moltes d’aquestes substàncies existeixen, però altres, les que he posat en cursiva, són invents.

Capsa i etiqueta del medicament homeopàtic Oscillococcinum.
Fes doble clic per ampliar.


Com pot una persona no versada en el llenguatge tècnic conèixer si li fan passar gat per llebre en la publicitat? No pot. La publicitat es basa en la confiança que el consumidor té en la marca o en qui ven el producte. Si un farmacèutic et suggereix que compris oscillococcinum, t’està venent un preparat homeopàtic que no té més que sucre en forma de boletes, però no hi ha ni rastre de la substància que diu que hi ha, i que a més no ha existit mai, perquè l’oscillococcinum seria un microorganisme que un inexpert metge francès, Roy, va creure veure el 1925 a la sang de certs pacients, però del que no se’n ha demostrat mai l’existència. Aquest és un exemple d’engany. Però tu te’l creus perquè fas confiança en el farmacèutic, que creus que no t’enganyarà… però molts cops és el mateix farmacèutic l’enganyat per les farmacèutiques, les empreses, ben entès.

L’ús de terminologia inventada però amb algun fonament és una altra forma de tergiversació. El terme densoactiu va ser inventat per vendre detergents líquids i és una paraula-maleta fruit de la condensació de dens– que en realitat volen dir viscós o espès- i actiu, és a dir que té matèria activa detergent. És un terme no científic. També són invents amb base real el Saciactiv o el Calciforte dels iogurts [+], que són barreges d’ingredients que molts iogurts contenen. Si es personalitza amb un nom la barreja, i es registra, se li dona un estatus de producte gairebé farmacèutic i per tant a les propietats nutricionals del iogurt se li afegeixen les terapèutiques, sigui per rebaixar el pes o per augmentar el nivell de calci a la sang. Farien el mateix efecte els iogurts sense aquests termes inventats, però això els diferencia dels de la competència atribuïnt-los més nivell científic.

La resta de termes citats corresponen a substàncies realment existents, i la major part tenen efectes provats, al menys en determinades condicions d’ús. Les marques els destaquen en la seva publicitat per fer aparent el seu compromís amb la recerca al servei del consumidor, per augmentar el seu prestigi enfront de les marques blanques, que les copien amb uns mesos de demora.

Les empreses de l’alimentació cada cop més aposten per l’estratègia de la transparència, procurant evitar en els seus ingredients terminologia “sospitosa de química”. En lloc de posar els additius que contenen en forma de la grafia E-322, per exemple, posen “lecitina”, que és el mateix. Procuren eliminar la presència d’additius colorants i s’han inventat la gamma d’aliments colorants, que són també additius sense la classificació E, que tenen per objectiu donar color als aliments, i que deriven d’extractes vegetals: el color vermellós dels iogurts de maduixa l’aconsegueixen, per exemple, amb extracte de remolatxa. En canvi, els fabricants de cosmètics i detergents basen la seva estratègia publicitària en la ciència, amb spots televisius on surten experts de bata blanca, amb terminologia científica.

Qui usa també la terminologia Jabberwocky són els seguidors i practicants de teràpies alternatives. No en tenen prou amb usar terminologia xinesa, japonesa, coreana o hindú (yin-yang, aiurveda, ki) sinó que fagociten terminologia científica estàndard i la pretenen convertir en teràpies, com és el cas de la medicina quàntica, la cromoteràpia, o la medicina ortomolecular. Tot falàcies sense contingut científic.

La regulació de l’etiquetatge dels aliments, cosmètics i detergents ha ajudat i ajudarà més a la informació veraç del consumidor. La regulació de les teràpies alternatives serà impossible, perquè les ànsies de l’ésser humà de sanar-se i no patir hi seran sempre, i sempre hi haurà qui les explotarà impunement en benefici propi. En principi un nivell superior d’educació global hauria d’evitar caure en els paranys dels Jabberwockies quotidians, però en sóc força escèptic…

Densiaforte, la marca de iogurt que diu que té calciforte, però que realment no és un ingredient.

Anuncis

A QUINA ANDANA ARRIBA PRIMER EL METRO?

08/10/2017

Publicitat de Correos el setembre de 2017.

L’empresa Correos està fent una campanya publicitària de l’estil “patriòtico-emocional”. La campanya es diu “Algo muy nuestro” i va posant diversos exemples d’idees que el publicista imagina que la gent sent com a seves, i ho fa anàleg a Correos, empresa que la gent també sentiria com a seva. Al marge de l’estil de la campanya, que per a mi és tan insoportable com les de la ONCE o de la Loteria Nacional, voldria analitzar l’exemple primer que va posar als cartells.

Creer que el metro siempre llega antes al andén de enfrente“. És una creença, això, o potser té alguna part de veritat? Aquest pensament és anàleg al de que quan ets a una embussada a l’autopista, els altres dos carrils van sempre més depressa que el teu. Evidentment aquest segon exemple és una falàcia, perquè un es troba a l’atzar en un carril o un altre, i probablement l’usuari només es fixa en la demora quan veu que els altres van més depressa, però no es fixa en que altres vegades ell anirà més depressa.

El problema del metro i les andanes es pot modelitzar matemàticament. Aquí en farem una aproximació elemental visual, que es pot anar seguint al dibuix i taula adjunts. Imaginem un extrem de línia, amb l’estació final i quatre estacions a la línia. Imaginem que hi ha un tren cada 10 minuts, que els trens s’esperen 2 minuts al final, paren 1 min a cada estació, i entre estació i estació tarden també 1 min. I ara imaginem passatgers que arriben a les estacions A, B, C i D, a les 10:00, les 10:01, les 10:02 i així successivament fins les 10:09.
El passatger que arriba a les 10:00 a l’estació A per anar cap a la dreta veurà un tren cap a la dreta a les 10:01, i l’agafarà. I ja no veurà que arriba un tren cap a l’esquerra a les 10:06, que sortirà de l’estació a les 10:07, arribarà al final a les 10:08 i sortirà cap a la dreta a les 10:10. El primer tren que ha vist va, doncs, cap a la dreta.

El passatger que arriba a l’estació A a les 10:01 agafarà el tren cap a la dreta a les 10:01, i ja no veurà tampoc el tren cap a l’esquerra de les 10:06. El primer tren que ha vist va també cap a la dreta. En canvi, si arriba a les 10:02, el primer tren que veurà serà el que va cap a l’esquerra a les 10:06, i no podrà agafar el seu tren cap a la dreta fins a les 10:01. El mateix els passa als passatgers que arriben a l’estació A a les 10:03, 10:04, 10:05 i 10:06, però als que arriben a les 10:07, 10:08 i 10:09 veuran el primer tren a passar cap a la dreta. En resum, la probabilitat de veure un tren cap a la dreta o cap a l’esquerra és, per a l’estació A, de 5 sobre 10. La hipòtesi de que sempre veus passar el tren de l’altra andana no es satisfà.

Què passa a l’estació B? El primer tren que va a la dreta passa a les 10:03, i el següent a les 10:13. El primer que va a l’esquerra arriba a les 10:04 i el següent a les 10:14. Els passatgers que arriben a l’estació entre 10:00 i 10:03, i entre 10:05 i 10:09 veuen primer el tren que va a la dreta, i només els passatgers que arriben a les 10:04 veuen que passa primer el de l’esquerra. La probabilitat, en aquesta estació, és de 9 a 1. La hipòtesi no es satisfà pels passatgers que volen viatjar en sentit contrari al final de línia, però sí per als que van cap a l’estació final.

Fes clic per ampliar el dibuix

A l’estació C veiem les freqüències a l’inrevés. De 10 passatgers que arriben al llarg dels minuts, set veuran primer el tren que va cap al final i només tres veuran primer el tren que va en sentit contrari. I exactament al revés pels passatgers de l’estació D.
Resumint, segons l’estació hi ha un comportament o un altre. La creença de que sempre passa primer el tren de l’andana contrària és, doncs, una creença que no és certa en termes generals, però sí que serà certa per a determinades estacions. Dependrà de la freqüència dels trens, de les distàncies entre estacions, de la durada de les parades a les estacions…

Per veure si aquesta conclusió és generalitzable, caldria fer la modelització matemàtica completa, suposant n estacions separades per distàncies d diferents entre elles, i freqüències de trens variables. Això ho deixo com a exercici per al lector…


ELS PLATS DE CORTES ISLAND I LES CAMISES DE MUMBAI

07/09/2017

Ja fa força anys -2003- vaig escriure un article que després va ser un capítol del llibre “La truita cremada“. L’article es deia “A contracorrent“, i un dels seus apartats era “Les camises de Mumbai“. Pots consultar-lo aquí [+]

Ves per on, l’he reviscut aquest estiu.

Cortes Island es una isla de mil habitants permanents -a l’estiu tres mil- situada força al nord de Vancouver (Columbia Britànica, Canadà), i allà vaig passar-hi uns dies, a una propietat –Channel Rock– d’una branca de la meva família americana. És una possessió molt gran, amb bosc, jardí i diverses casetes independents de disseny molt acurat, per fer-hi activitats formatives o estades relaxades. Realment cal tenir capacitat de relax, perquè per arribar-hi des de San Francisco -on viu la família- cal agafar dos avions, llogar un cotxe, agafar dos ferris, fer uns quilòmetres per carretera i pista, i vint minuts de camí a peu creuant el bosc pel camí de la Caputxeta, amb llops i tot. Alternativament, un taxi-barca que et deixa a una platja rocosa sense embarcador. No s’hi arriba d’altra manera.

Van fer les cases a un indret on hi havia viscut molts anys l’escriptora, periodista i conservacionista canadenca Gilean Douglas [+]. En morir ella el 1993, la fundació que havia creat va fer-se càrrec de la propietat, va construir-hi noves casetes i va modernitzar una mica tot plegat. No hi havia -ni hi ha- wifi, ni gairebé cobertura de telèfon, i poca aigua corrent, que ve d’un torrent proper i de la que només és tractada una fracció. Ara hi ha plaques fotovoltaiques per la llum i els refrigeradors, però els lavabos segueixen sent pous secs sense aigua. Tot, seguint les directrius de la fundadora, austera i espartana, però que tenia servei domèstic…

Hi poden viure fins a trenta persones entre els diferents espais, que solen fer l’àpat principal -el sopar- de forma colectiva. I cal després rentar els plats, cosa que fan els mateixos estadants. Un dels principis del lloc és estalviar aigua, i per a això tenen cinc palanganes, una al costat de ‘altra, plenes amb aigua, i la primera amb sabó. Primer es netegen els plats de les restes orgàniques, que serviran per fer compost. I passen a la primera palangana amb sabó -naturalment ecològic i derivat de plantes-, on es renten de forma convencional. Els plats sabonosos passen a una segona palangana, on hi ha inicialment aigua neta, i s’esbaldeixen. Hi ha tres palanganes més, també amb aigua neta a l’inici. A mida que li passen plats la primera palangana d’aigua d’esbaldir va quedant sabonosa, i la tercera palangana d’aigua inicialment neta es va tornant també sabonosa, i així fins a la cinquena. Al final de la cadena hi ha una primera palangana amb sabó i aigua totalment bruta, quatre palanganes de més a menys sabonoses, i els plats nets al final. Els plats que en surten es poden eixugar sense gaire recança i considerar-los nets, que ho estan.

Es podria anar esbaldint els plats sota l’aixeta, però probablement es consumiria més aigua que la necessària per omplir totes les palanganes. Caldria calcular-ho. Pel que vaig veure dels dies que em va tocar a mi rentar plats, no calen cinc palanganes: amb quatre, i a vegades amb tres n’hi hauria hagut prou, depenent del què s’hagi menjat.

I què hi té a veure tot això amb les camises de Mumbai? A Mumbai hi ha uns grans rentadors municipals a l’aire lliure -el Dhobi Ghat-, on van a parar totes les robes brutes dels hotels de la ciutat i també roba de particulars, amb un sistema d’identificació complex. Com que també hi ha penúria d’aigua, el procediment de rentatge consisteix en rentar la roba bruta amb aigua no del tot neta, sinó aigua sabonosa que ja ha rentat roba anteriorment però que encara no és del tot bruta. I la roba així rentada. parcialment neta, es passa a uns altres safareigs on hi ha aigua no del tot neta però prou neta com per rentar la roba parcialment neta del safareig anterior. I així successivament. El procediment s’assembla al dels plats, però amb una diferència: els plats es mouen però l’aigua es queda a les palanganes, i en canvi a Mumbai es mou la roba d’un safareig a l’altre, i també mouen l’aigua a mida que es va embrutant.

Els rentadors públics de Mumbai


El procés de Mumbai és un procés en contracorrent típic de les indústries: es mouen un sòlid i un fluid en contacte, o dos fluids per canonades juxtaposades, en sentits contraris. Aquests procediments permeten transferir la calor d’un fluid a un altre de la forma més eficaç possible, i, en processos industrials més complexos d’analitzar aquí, es pot procedir a destil•lacions més eficaces, o processos d’extracció amb el mínim consum de dissolvent extractor, com és el cas del rentatge, de camises o de plats.

Refredant arròs: cinc porcions d’arròs i cinc d’aigua


Que el procediment és més eficaç des del punt de vista de l’estalvi es pot veure amb quatre números que es poden consultar a l’article original. Vaig agafar com a exemple el procediment de refredar arròs bullit. Imaginem que tens 1 kg d’arròs bullit a 100ºC i 1 kg d’aigua a 0ºC per refredar l’arròs. Si simplement els barreges acabes tenint 2 kg de barreja a 50ºC aproximadament. Però si divideixes l’arròs i l’aigua en porcions pots millorar-ho molt: si fas dos mitjos quilos d’aigua i primer barreges l’arròs amb mig quilo d’aigua i després amb el següent mig quilo, acabaras tenint l’arròs a 44,4ºC i l’aigua a 55,6ºC, millor que abans, perquè tu el que vols fer és refredar l’arròs. I si fessis el mateix procés, ara amb dos mitjos quilos d’aigua i dos mitjos quilos d’arròs, amb les combinacions adequades arribaries al final a que l’arròs el tindries a 37,5ª i l’aigua a 62,5ºC. I amb deu porcions de cada arribes a arròs a 17,6ºC i aigua a 82,4ºC. En el límit, pots imaginar que si dividíssim l’arròs i l’aigua en infinites porcions, al final podries arribar a tenir l’arròs a 0ºC i l’aigua a 100ºC… a costa d’un temps infinit i infinites operacions de barreja, naturalment. A la figura adjunta es mostra el procés quan dividim l’arròs en 5 porcions de 0,2 kg cadascuna, i li fem passar successivament cinc porcions d’aigua 0,2 kg cadascuna. Es pot anar veient l’evolució de les temperatures respectives.

Tot plegat, el que mostra és que l’optimització de l’estalvi d’energia o d’aigua és factible, però requereix modificar els processos clàssics, normalment amb més inversions. Però cal anar-hi progressivament.

Pensa-hi cada vegada que refredes l’arròs bullit…


ES POT FER QUÍMICA A INFANTIL I PRIMÀRIA?

09/07/2017

Pàgina inicial de la web del Programa Exper(i)ència

Naturalment que no. Com no es pot fer física, ni biología, ni historia de l’art. La pregunta és típica de profesor de secundària o d’universitat, acostumat a treballar per disciplines científique

El cicle de l’aigua a una bossa de plàstic (fes clic a qualsevol foto per ampliar-la)

s. Però a nivells d’infantil i primària és una altra cosa. Els mestres preparen les activitats corresponents a les diferents facetes docents – plàstica, natura i medi, llengua, matemàtiques i càlcul, motricitat i altres- de forma integrada, i quan estan treballant un aspecte, en treballen també d’altres simultàniament. El que no hi ha és una separació dràstica entre disciplines, com després cursaran els alumnes a secundària.

L’objecte d’aquesta entrada no és plantejar acadèmicament de quina manera es poden formar les  competències i continguts  dels àmbits científics a aquestes edats. Aquí em proposo simplement explicar l’experiència de formar part del projecte Exper(i)ència, promogut per la Fundació Catalana per a la Ciència i la Innovació (FCRI). Aquest projecte pretén l’estímul a la generació de vocacions científiques en alumnes des d’infantil a batxillerat. La metodología consisteix a posar en contacte els alumnes -en el seu entorn escolar- amb científics sènior, emèrits o jubilats, d’universitats o d’empreses. Cada centre i cada sènior elaboren un programa d’activitats, que poden ser molt variades i dependrà dels interessos del centre, del nivel dels alumnes i dels coneixements, interessos i disponibilitat del sènior. Actualment el projecte és en el seu segon any, i hi ha 28 científics i 28 escoles o instituts vinculats. Entre les activitats que es desenvolupen hi ha – de més a menys edat- la col·laboració en el treball de recerca de batxillerat, la impartició de conferències especialitzades, visites a centres de recerca, desenvolupament de pràctiques per part dels alumnes, demostracions pràctiques, formació del professorat, i totes aquelles que s’acordin entre ambdues parts.

Pintant amb aigua

A mi se’m va vincular a una escola d’infantil i primària de Barcelona, l’escola Turó del Cargol, al barri de Gràcia, al costat del Park Güell. A aquesta escola hi ha diverses mestres motivades per les activitats científiques, i programa cada any un tema transversal de treball, que les diferents classes treballen al seu nivell.

Experiments de flotació

De comú acord, el paper del sènior a l’escola ha estat doble. Per una banda, la formació dels mestres en allò que necessitéssin relacionat amb la ciencia, tant de l’activitat quotidiana com de les activitats relacionades amb el tema transversal. I, per altra banda,  el suggeriment, planificació i realització d’activitats científiques amb els nens. El primer dels cursos, a més, es va fer una activitat addicional, que va consistir en que els nens van treballar el tema de “Com és i què fa un científic”. Van fer tota mena de dibuixos de científics més o menys bojos amb bata blanca, majoritàriament homes. I, després, classe per classe, el científic sènior –un servidor- es sotmetia a una batería de preguntes de l’estil “Què has inventat”, “Fas explosions?” “Has tingut mai cap accident”, “Per què vas decidir-te a ser científic?” i mil preguntes més de difícil resposta i que donen una clara idea de la visió que els nens grans tenen d’un científic. Els més petits no sabien què era un científic i a partir d’ara es pensaran que tots els científics són com jo….

Circuits d’aigua

Enguany el tema transversal d’escola ha estat “L’aigua”. Hem dedicat tres sessions d’ 1 hora a la formació básica, consistent en fer treballar als mestres una pregunta cada dia: “Què és l’aigua?” “On hi ha aigua?” i “Per a què serveix l’aigua?”. A partir de les respostes inicials dels mestres a aquestes preguntes tan simples s’estructurava la sessió, plena d’idees, preguntes i suggeriments. Hem dedicat tres sessions més al disseny i preparació d’activitats sobre l’aigua. Algunes activitats es desenvolupaven a cada aula, i altres eren per tota l’escola, pel Dia Mundial de l’Aigua que es va celebrar el 22 de març de 2017. A les fotos es poden veure algunes de les activitats fetes: pintar amb aigua de colors, experiments de flotació, circuits en que l’aigua baixa per gravetat, i l’observació del cicle de l’aigua en una bossa de plàstic posada al sol. Tots reunits al pati vaig fer l’experiment del sortidor de cocacola amb mentos, que no té massa relació amb el tema de l’aigua, però que funciona i és espectacular. Val a dir que es fa amb cocacola light i és en un 98% aigua.

Al laboratori de l’escola , i per a les classes de P3 i P4 , a més, vaig fer personalment alguns experiments addicionals: trasvasar aigua entre dues galledes amb un tub de goma, desplaçar una barqueta de paper d’alumini amb detergent, aguantar l’aigua d’un got invertit amb un paper.

Com es pot entendre de tota la descripció anterior, en la meva opinió cal fer l’aproximació a la ciència amb una estrategia ben simple, i per descomptat experimental: primer, manipulació dels objectes per part dels mateixos nens; segon, observació orientada del què passa en fer l’experiment; i, després, a la clase, descripció amb el seu llenguatge del que han manipulat i observat.  És tasca posterior de la mestra anar depurant el llenguatge i anar introduint terminología més precisa, com evaporació, vapor d’aigua, o, per als més grans, densitat, fluidesa o gravetat, lligades a altres observacions fetes anteriorment.

Experiment de la pell de l’aigua

També és el moment de la pregunta que espontàniament surt, i que obre una cadena infinita de preguntes: “Per què passa això que passa?“. La resposta als perquès passa ineludiblement per fer referència a la ciència coneguda i la inclusió de nous conceptes més abstractes. I, finalment i com a culminació, és el moment dels “Què passaria si…”  per obrir la perspectiva de futur, dels experiments mentals i l’especulació sobre possibles nous experiments. Aquestes són les quatre etapes de tot procés experimental: Què hi ha, que li passa, per què li passa i què passarà.

Pel camí, i intercalats en tot moment, els fonaments de la lògica i la deducció científica hi són omnipresents, al nivell adequat  a cada edat.  N’haviem vist algun exemple a una entrada anterior [+]  Totes aquestes activitats no són encara química ni física, però en són els fonaments. I això ho ha de poder fer un mestre no especialista en ciències, com fa llengua o motricitat. I ho fan ben fet, si estan motivats i ben orientats.

Preparant el got d’aigua que no es buida perquè hi ha un paper

Trasvassament d’aigua amb un sifó


ÚS DEL LEGO EN L’ENSENYAMENT DE LA QUÍMICA A SECUNDÀRIA

07/07/2017

Aquesta entrada va especialment per a professors de química de secundària. És el resum de la meitat d’una conferència invitada que vaig presentar a la recent reunió biennal de la Real Sociedad Española de Química (Sitges, 25 a 28 de juny de 2017). És, al seu torn, un resum de l’article publicat a la revista Educació en Química, que pot descarregar-se des d’aquí [+]

No hi ha dubte de l’eficàcia de l’ús d’analogies quan són usades correctament. L’analogia entre l’estructura de la matèria i les construccions del LEGO està força estesa, i el propòsit d’aquesta entrada és fer-ne una crítica tot assenyalant-ne els diversos problemes que genera si s’aplica malament.

Quan, el 1963, es va crear el sistema LEGO les peces eren de formes simples: paral·lelepípedes de diferents gruixos, amplades, alçades i colors, cilindres, plaques i poca cosa més. Amb els anys han augmentat moltíssim el nombre i varietat de peces disponibles, com finestres, rodes, eixos o figures humanes completes des de 1974. Moltes de les peces actuals són dissenyades ad hoc per construir una determinada estructura, en una filosofia molt llunyana de la original, però molt més propera al consumidor actual, menys preocupat pel procés de construcció que pel resultat final. Aquesta ha estat també l’evolució d’altres joguines de construcció com Meccano. En l’analogia que es comenta aquí s’usen només les peces de LEGO genèriques del sistema original.

És trivial usar LEGO per a la maquetació en tota mena de camps, també en la química, com taules periòdiques [+]  o molècules d’ADN. tot i que són molt millors els models moleculars de barres i esferes, o d’espai ple [+] . Aquí no parlem d’això. L’analogia que aquí ens interessa és entre les peces de LEGO i les entitats químiques elementals, àtoms o molècules. Per exemple, Izquierdo et al.  [2011, “Química a infantil i primària. Una nova mirada” Ed. Graó, Barcelona. p. 73-84]  fan ús de les peces de LEGO per visualitzar les reaccions que tenen lloc en la respiració cel·lular. Anderton  [+]  fa una proposta similar d’igualació de reaccions a partir de manipulació de peces de LEGO. L’edat que aquestes propostes recomanen per fer aquests tallers és al voltant dels 11 a 12 anys.

Figura 1. A i B Formes possibles de la molècula d’aigua, si no esté informació de l’estructura. Les altres formes possibles són topològicament equivalents. C Hipotètica molècula d’H16O, possible segons LEGO però sense existència real.

Els tres punts bàsics de l’analogia LEGO-estructures moleculars són evidents:

  • cada peça individual de LEGO és anàloga a un àtom. Efectivament, cada peça no es pot fer més petita, és indivisible.
  • àtoms diferents venen representats per peces de LEGO diferents. De fet, hi ha moltes més peces de LEGO diferents que tipus d’àtoms, que avui són 118.
  • l’unió de dues peces equival a un enllaç entre dos àtoms. Majoritàriament són enllaços covalents.

Les propostes citades usen el joc bàsicament per explicar un aspecte força abstracte de la reacció química, com és l’estequiometria, és a dir el nombre d’àtoms i molècules que participen d’una reacció. En essència el procediment és ben simple:

  • s’escriu la reacció a modelitzar en la seva versió molecular
  • es construeixen amb LEGO aquestes molècules
  • després, en la reacció les molècules inicials de reactants desapareixen, i els àtoms que les constituïen es reordenen donant noves molècules, els productes, mantenint-se invariable globalment el nombre i tipus d’àtoms del sistema en reacció.

Aquesta és l’analogia. Cal ser conscient de que té un grau d’abstracció considerable. La reacció química escrita en paper és ja una abstracció important de la reacció química vista al laboratori, perquè s’ha passat de veure substàncies reals a fórmules de substàncies. I, a més, ara aquestes fórmules es fan anàlogues a construccions de LEGO, però només pel que fa al nombre i tipus de peces involucrades, i no per la seva forma.  El procés mecànic de combinar peces i imaginar noves molècules no presenta dificultats per als alumnes, especialment si no hi ha limitacions a l’hora de fer propostes de molècules de productes a partir de molècules de reactants. Però, i aquí ve la pega principal, en tot el procés d’analogia és probable que s’hi indueixin espontàniament, per acció o per omissió, diferents errors conceptuals. Cal, per tant, evitar o paliar la consolidació d’aquests errors en les ments dels alumnes, identificant-los per tal d’explicitar-los i procurar que els alumnes en siguin conscients.

Se’n indiquen a continuació els més rellevants.

Concepte erroni 1. Imaginar que les molècules es creen unint directament els àtoms dels seus elements constituents. En realitat els esquemes de reacció per obtenir els diferents productes gairebé mai passen per la síntesi directa a partir dels àtoms constituents: l’àcid sulfúric H2SO4  no s’obté a partir de S, O i H,

Concepte erroni 2. Imaginar que les formes de les peces determinen les possibilitats de fer molècules. Però malauradament les “molècules” modelitzades no tenen per què tenir res a veure ni en forma ni en mida relativa -ni, per descomptat, en colors- amb les molècules reals. Només en alguns casos les “molècules” de LEGO i les reals s’assemblen una mica, com en la molècula de l’aigua feta amb una peça de 4×2 i dues de 1×2 (figura 1). Les formes i mides dels àtoms reals no poden ser representades en absolut amb peces de LEGO, i això és una important limitació operativa.

Concepte erroni 3. Imaginar que, així com en el LEGO es poden unir totes les peces entre elles, tots els àtoms es poden unir entre ells donant molècules. Però, en química, no totes les molècules són possibles.

Concepte erroni 4. Imaginar que, de la mateixa manera que les peces de LEGO es poden unir de formes diverses, els àtoms de les molècules també. Així, la molècula H2O es pot fer amb LEGO unint cada H a l’O, o unint un H a l’O i unint-lo també a l’altre H (H–O–H o H–H–O), però només la primera estructura és correcta.

Concepte erroni 5. Imaginar que, així com en el LEGO una peça pot unir-se amb altres mentres li quedin protuberàncies i buits, l’àtom que la peça representa també pot anar-se unint amb altres àtoms. sense limitació. Però això no és cert.  En l’exemple de la molècula d’aigua, la peça vermella de 2×4 representant l’oxigen podria unir-se, en el límit, amb 16 peces d’1×2 blanques que representen hidrògens, vuit per dalt i vuit per baix. Però l’H16O no existeix (figura 1).

Concepte erroni 6. Imaginar que, de  la mateixa manera que les peces en l’estructura mantenen la seva individualitat, els àtoms en les molècules també la mantenen. Però, de fet, a les molècules -o als metalls, o a les sals, o a les estructures gegants covalents, o a les macromolècules- no hi trobem àtoms com a tals.

Concepte erroni 7. Imaginar que que les reaccions químiques tenen lloc descomponent les molècules dels reactants en els seus àtoms constituents, que després es tornen a reagrupar en altres molècules de productes. Però els mecanismes de reacció són molt més complexos.

Concepte erroni 8. Imaginar que les reaccions tenen lloc completament, és a dir que desapareixen els reactants i es transformen completament en productes. Aquest error és molt comú perquè no es sol distingir prou clarament entre la reacció química a escala de molècules, representada per l’equació química, i la reacció química a escala macroscòpica, on hi poden haver condicions d’equilibri i conversions menors del 100%.

Concepte erroni 9.  Imaginar que les reaccions modelitzables amb LEGO són les úniques existents. Però n’hi ha moltíssimes més, com les reaccions amb metalls, o en dissolució, que  no són prou ben representades amb les peces de LEGO.

Concepte erroni 10. Imaginar que les reaccions tenen lloc d’una forma ràpida, i relacionada amb la rapidesa amb que es poden construir o destruir les estructures de LEGO. La cinètica i el mecanisme de les reaccions no poden ser imaginats veient només l’estequiometria.

Concepte erroni 11. Imaginar que en les reaccions hi ha poca energia involucrada. De fet, el mecanisme real d’unió de dues peces de LEGO entre elles és l’elasticitat del material de que estan fetes, i el fregament, forces molt més febles que les dels enllaços químics.

Concepte erroni 12.  Imaginar que, així com en LEGO es passa directament de les peces individuals als objectes, en la química també es pot passar dels àtoms als objectes per simple creixement de l’estructura. En la realitat hi ha altres estructures intermèdies involucrades, diferents de les molècules, i unides entre elles per enllaços diferents dels covalents.. Això no és possible de visualitzar-ho amb LEGO.

Qualsevol eina didàctica porta implícites determinades limitacions. En el LEGO hi ha una limitació estructural: el joc indueix a visualitzar i imaginar estructures químiques que són molt allunyades de la forma de les estructures reals de la matèria. La segona limitació té a veure amb la reacció química: en cap moment la modelització permet treure cap conclusió sobre aspectes termodinàmics -equilibri, conversió-, o sobre aspectes cinètics -velocitat de reacció- i només permet visualitzar l’estequiometria de les reaccions.

Cal, doncs, que el professor sigui molt conscient de les limitacions de l’analogia LEGO – química, i n’eviti els paranys. Com cal fer en qualsevol altra analogia o metodologia didàctica.

Figura 2.  Reacció de combustió completa del metà visualitzada amb peces de LEGO. A (metà CH4) i B (dues molècules d’oxigen O2) reaccionen donant C (diòxid de carboni CO2) i D (dues molècules d’aigua H2O)

 


HI HAURÀ FUTUR, EN UN FUTUR? (Orientacions per a secundària)

01/03/2017

Primera diapositiva del PowerPoint de "La UB s'apropa"

Primera diapositiva del PowerPoint de “La UB s’apropa”

Des dels seus inicis participo en l’activitat denominada “La UB s’apropa”. Professors de diferents branques anem als instituts i col•legis de secundària a oferir orientació per entrar a la universitat i presentar la UB com a opció posible per al seu futur.

Solc començar la meva intervenció preguntant a l’alumnat si tenen ja decidit què i on volen estudiar. Sempre uns quants, la meitat o més, aixequen la ma. Jo els dic que ja poden anar-se’n: si un dels assistents vol fer química a la UAB i jo li plantegés que la UB fa millor el grau de química -al marge de què vol dir “millor”, i al marge de si és cert o no que és millor- jo estariaa creant un seriós problema a l’alumne, i la darrera cosa que jo vull fer és crear problemas i dubtes, perquè jo vaig allà a orientar.

La meva segona pregunta és si decideixen o decidirán els seus estudis futurs en base al que els agrada, o pensant en la seva sortida profesional. Majoritàriament afirmen que és la primera opció. Quan els pregunto si les sortides professionals no els importen, sempre hi ha algún nihilista que afirma que en el futur no hi haurà feina. La meva pregunta inmediata és quines feines s’imaginen que hi haurà quan acabin els seus estudis de grau, cap allà al 2021. Ho veuen molt lluny, i ni s’ho imaginen. Mai hi ha respostes gaire optimistas.

Llavors els plantejo quines necessitats creuen que tindrà la población en un futur, i que ells podran contribuir a satisfer. Costa d’arrencar, però al final sempre sut una variada gamma de necessitats. Un cop depurades les respostes – per exemple, la tecnología no és una necessitat, sinó un mitjà- arribem a una llista més o menys llarga on hi ha la salut, la vivenda, l’alimentació, el transport, la comunicación, la formació, l’oci… Quasi mai hi surten com a necessitats la cultura o la seguretat. Constatem en el futur hi haurà probablement les mateixes necessitats que ara.

A continuació, la bona noticia: estudiin el grau que estudiin, la formació que adquireixin els pot ajudar a treballar per satisfer alguna de les necessitats anteriors. L’argument és que cal distingir entre formació i professió. Una mateixa formació –un grau de química, per exemple- pot permetre treballar en professions molt diverses, com químic en un laboratori o una industria química, tècnic de medi ambient d’un ajuntament, químic a un hospital o un laboratori farmacèutic, tècnic a una gran varietat d’indústries com alimentàries, de materials de construcción, de polímers, biotecnològiques o de tota mena de productes de consum; o profesor de química i altres ciències, o redactor científic d’un mitjà de paper o digital; o comunicador científic, o qualsevol altra professió directament o indirectament relacionada amb la ciencia. I es podría posar exemples similars en qualsevol formació de les actualment ofertes, fins i tot les més aparentment allunyades del mercat de treball. Per exemple, un grau d’humanitats, a part de conduir a la professió docent a molts nivells, permet el treball en empreses culturals –editorials en paper o en qualsevol format-; o guía turístic o redactor de notícies culturals; o tècnic de museu en qualsevol de les seves formes. I el mateix exercici es podría fer de cadascun dels graus actualmente oferts. És cert que hi ha formacions que van més lligades a determinades professions, per tradició o per requeriments legals en alguns casos obsolets: una farmacia o un laboratori farmacèutic només pot ser regida o dirigit per un graduat en farmacia, per exemple, però un graduat en farmàcia pot fer moltes coses més.

La diguem-ne mala noticia és que la gran majoria de les professions poden ser exercides per graduats de diferents estudis: el tècnic de medi ambient d’un ajuntament pot ser un graduat en química, en bioquímica, en biotecnología, en ciencias ambientals, en enginyeria ambiental, en enginyeria química… Un graduat trobarà, doncs, competencia a l’hora d’entrar a treballar, no només dels seus col•legues, sinó de molts altres, i d’aquí se’n desprèn la necessitat d’afegir als estudis reglats alguna altra formació complementària: més idiomas, alguna activitat social com monitor o tècnic d’una ONG, un compromís polític o social, formació técnica no reglada, o qualsevol altra activitat que requereixi un cert esforç. Tot això és ben valorat pel hipotètic futur empleador.

El que és evident és que no es pot saber amb precisió quines noves professions hi haurà en el futur, entre altres motius perquè e’n inventaran de noves; ni tampoc es pot saber quines noves necessitats de coneixements, formació i competències i habilitats es requerirán. Però el que és també evident és que qui ocuparà aquestes noves professions o tasques de futur són els estudiants del present.

Personalment no crec en les formacions excessivament especifiques i aptes només per a una franja molt estreta de funcions. No considero una bona estrategia per a les universitats el seguiment massa servil de les necessitats que determinades empreses afirmen tenir. Recordo perfectament en una reunió de degans de ciències espanyols que un alt dirigent d’Alcatel va dir que necessitaven alguns milers d’enginyers de telecomunicacions; i, interpel•lant als degans allà presents, va afirmar que seria un error per part de les universitats que corréssin a muntar plans d’estudis i carreres per formar enginyers de telecomunicacions, perquè els primers graduats sortirien com a aviat al cap de cinc anys, quan Alcatel ja no els necessitaria, perquè els volia ara.

La meva proposta, per als qui dubten –si no dubten i ja han decidir què i on estudiar, el consell no se’ls aplica- és la següent: tria una carrera general, amb formació básica i polivalent, i segueix amb formació continuada al llarg de tota la vida. A fi de comptes, i com deia Goethe ja el 1809, ho hem d’aprendre tot de nou cada cinc anys…

L’activitat “La UB s’apropa” conté molts altres aspectos, naturalment, com criteris per saber quina universitat o centre és el millor per a l’alumne, una descripció general de la UB, i altres aspectes. Però el tema explicat al començament, és a dir, què escollir, és per a mi el més decisiu.

goethe-afinitats


SÓN QUATRE AMB ZERO CINC

12/02/2017

En demanar el compte el cambrer em diu “Són quatre amb zero cinc“. Alguna cosa em grinyola, i començo a elucubrar. Per què ha dit quatre amb zero cinc i no simplement quatre amb cinc?

Potser si diu quatre amb cinc algú pensaria que és 4,5? No, perquè per dir que són quatre euros i mig diriem tots quatre amb cinquanta. Qui fes això estaria fent canvis d’un llenguatge a un altre. Aquests canvis de llenguatge són tan fàcils que no solem ser-ne conscients. Però no tots els canvis són tan senzills.

Si preguntem l’hora a algú no ens dirà mai que són les quatre i zero cinc, sinó les quatre i cinc. El sistema de dir minuts i segons no és decimal, sinó en base 60. Per indicar que passa mitja hora de les quatre no diem mai -excepte per fer una gracieta- que són les quatre coma cinc, sinó que diriem que són dos quarts de cinc, o la forma menys genuïna però ara acceptada de les quatre i mitja. Ho diem en femení perquè implícitament parlem d’hores. Les altres unitats de temps que són el dia de 24 hores, la setmana de 7 dies, el mes de 28, 29, 30 o 31 dies, i l’any de 12 mesos, i 365 o 366 dies, tampoc segueixen el sistema decimal i d’aquí la complicació de càlculs de dates i intervals de temps.

Hi ha moltes mesures quotidianes que tampoc són de base decimal. Per exemple, a més de la notació del temps, també els graus angulars, com quan es donen latituds i longituds: la latitud oficial del centre de Barcelona és de 41º 23′ 0,71″. Val la pena comentar dos detalls: els minuts i segons temporals s’han d’abreviar en el Sistema Internacional vigent com min i s, respectivament, i en canvi els minuts i segons geomètrics amb i . I, per altra banda, encara que el sistema de mesura del temps o dels graus angulars sigui sexagesimal, cadascun dels seus tres components segueix el sistema decimal, i per això els segons geomètrics de la latitud de Barcelona són 0,71. Molts mapes i GPS no donen només les coordenades sexagesimals sinó amb xifres decimals, més fàcils d’introduir. La mesura decimal dels angles es fa amb el concepte de radian. Un radian (rad) té aproximadament 57º 17′ 45″, perquè per definició una circunferència té 2π radians. I deixem-ho aquí.

Un radian és l'angle que conté un arc que té una longitud com el radi. Fes clic per ampliar

Un radian és l’angle que conté un arc que té una longitud com el radi. Fes clic per ampliar

Una altra mesura no decimal és el sistema antic d’enumerar nombres d’unitats. Una dotzena són 12 unitats, i una grossa són dotze dotzenes, o sigui 144 unitats. Els tipògrafs usen també unitats no decimals: el cícero o pica és una amplada de 4,5126 mm a Espanya, i es divideix en 12 punts. Però el valor concret depèn dels països, perquè no és una mesura unificada. Aquests punts són les amplàries de la font usada en l’escriptura, que es tria en escriure un text amb ordinador.

La unitat anglesa de longitud segueix sent el peu (foot, ft) , que té dotze polzades (inch). Per complicar una mica la cosa una polzada s’abreuja com a in i també amb el símbol , com els segons sexagesimals. Per definició un peu són ara 0,3048 m, i tres peus són una iarda (yard). La cosa es complica amb les milles terrestres (1609 m) i milles marines (1852 m)…

Una polzada (inch) dividida en 16 fraccions. Fes clic per ampliar.

Una polzada (inch) dividida en 16 fraccions. Fes clic per ampliar.

Un altre exemple d’unitats que no seguien el sistema decimal eren les unitats monetàries del Regne Unit pre-decimals, d’abans de 1971. Eren la lliura o lliura esterlina (pound o sterling pound, de símbol £), el xiling (schilling, de símbol s de solidus) i el penic (penny, plural pence, de símbol d de denier). Una lliura tenia 20 xilings i un xiling 12 penics. Des de 1971 una lliura té 100 nous penics (de símbol p). Per cert que hi ha moltes lliures segons el territori d’emissió, per exemple la lliura de Gibraltar o la d’Escòcia, totes del mateix valor que la del Regne Unit global.

Indicacions de carreteres del Regne Unit. No posen la barra de la fracció.

Indicacions de carreteres del Regne Unit. No posen la barra de la fracció.

Encara al Regne Unit, a les carreteres solen indicar les distàncies amb trencats o fraccions : Birmingham 3 1/4 mi, no 3,75 mi. Costums que els sistemes de GPS mantenen: “in a quart of a mile…” que tradueixen “a quatre-cents metres…“. El sistema de fraccions és el que apliquem a la mesura del temps en català, tant per indicar l’hora – dos quarts de tres– com per indicar quantitat de temps, dues hores i mitja (és a dir, 150 minuts, i també dos quarts de tres). Arribem a precisar així fins a mig quart. Sembla que això té origen en els rellotges de sol, que permetien llegir l’hora en vuit mitjos quarts. Aquí et pots descarregar un rellotge en notació catalana [+].
Un dels models del rellotge CataClock, amb indicacions catalanes.

Un dels models del rellotge CataClock, amb indicacions catalanes.

Cronòmetre centesimal (esquerra) i sexagesimal (dreta). Fes clic per ampliar,.

Cronòmetre centesimal (esquerra) i sexagesimal (dreta). Fes clic per ampliar,.


Calcular amb lliures i penics antics era complicat, i en canvi calcular amb euros i cèntims és fàcil. En aquest cas, el sistema decimal permet que els càlculs amb decimals i amb unitats monetàries siguin quasi equivalents quan ho escrivim, però en parlar és quan apareixen les terminologies citades al començament.

La unitat monetària euro €es divideix en cent cents, que s’abrevien ct, tant en singular com en plural. “Cent” és la denominació oficial, però a la pràctica tots els idiomes usen formes clàssiques com cèntim. Quan el cambrer en va dir quatre amb zero cinc barrejava el sistema decimal d’unitats monetàries, és a dir 4,05 €, i el sistema detallat, és a dir, 4 € amb 5 ct. Cap rebut ni factura inclou els cèntims detalladament quan s’escriuen les xifres, i només es fa servir el valor en euros i els decimals corresponents (1,80 €), però en omplir un xec pot usar-se la forma “un euro amb vuitanta cèntims” o ” “1 € amb 80 ct“. En lloc de la preposició amb es pot usar la conjunció i. Sempre es solen usar dos decimals en els rebuts: recomanen no escriure 15 €, sinó 15,00 €. Així s’eviten interpretacions errònies.

En resum, el cambrer devia imaginar que llegia 4,05 € i ho va dir textualment. Si hagués imaginat mentalment 4 € i 5 ct, potser hauria dit quatre amb cinc.

Som complicats…

Un euro d'Andorra i 50 cèntims de Letònia.

Un euro d’Andorra i 50 cèntims de Letònia.